Abstract:
A display substrate and a display device. The display substrate includes a pixel circuit in which the driving circuit controls a driving current driving the light emitter element to emit light; the first light emission control circuit applies a first voltage to a first terminal of the driving circuit in response to a first light emission control signal; the second light emission control circuit applies the driving current to the light emitter element in response to a second light emission control signal; the first reset circuit applies a first reset voltage to the control terminal of the driving circuit in response to a first reset signal; the first reset signal and the first light emission control signal are simultaneously turn-on signals during a period; the first light emission control line and the second light emission control line extend along a first direction and are arranged in a second direction.
Abstract:
A pixel circuit, including: an input sub-circuit, a driving control sub-circuit, a light emission control sub-circuit, a driving sub-circuit, a first light-emitting element and a second light-emitting element, wherein the driving control sub-circuit comprises a capacitor; the input sub-circuit is used for providing a signal of a data signal end to a first node; the driving control sub-circuit adjusts the voltages of the first node, a second node and a third node by means of controlling the voltages at two ends of the capacitor; the light emission control sub-circuit is used for providing a signal of a first power supply signal end to the second node under the signal control of a light emission control signal end; and the driving sub-circuit is used for connecting or disconnecting the connection between the second node and the third node under the signal control of the first node.
Abstract:
The present application provides a display panel, a method of driving the same and a display apparatus. The display panel has pixel regions, each of which has pixel structures. Each of the pixel structures includes an anode, a cathode and a light emitting layer. The display panel further includes a controller and power signal lines coupled to the controller. Cathodes or anodes in a same pixel region are coupled to a same power signal line. The controller is configured to control a duty cycle of a control signal input to a power signal line coupled to a pixel region in response to a motion picture being displayed in the pixel region.
Abstract:
A transparent display panel is provided, including a liquid crystal cell, a chromic material and a trigger component. The liquid crystal cell includes an array substrate and a first transparent substrate disposed opposite each other. A liquid crystal layer is arranged between the array substrate and the first transparent substrate. The chromic material is arranged at a side of the first transparent substrate away from the array substrate. The trigger component is connected to the chromic material for enabling the chromic material to perform a reversible change between a transparent state and a colored state.
Abstract:
It is disclosed an apparatus for detecting liquid crystal diffusion. The apparatus comprises an image acquisition device and an image processing device. The image acquisition device acquires an image of a liquid crystal panel in an image acquiring region. The image processing device analyzes the acquired image to determine an area of an image abnormal region, and the image abnormal region is a region of the liquid crystal panel to which liquid crystal has not diffused. After curing of a frame sealant, defects about liquid crystal diffusion in the liquid crystal panel are detected, and the detected results are feedback to adjust parameters for injecting and diffusing liquid crystal for eliminating these defects. It is further disclosed an apparatus for fabricating a liquid crystal panel and a method for detecting liquid crystal diffusion.
Abstract:
The present disclosure provides an array substrate, a flexible display device, and a method for manufacturing an array substrate. The array substrate includes a flexible substrate arranged at a display region and a peripheral region, and an array layer formed on the flexible substrate. The flexible substrate arranged at the display region has a first thickness, and at least a portion of the flexible substrate arranged at the peripheral region has a second thickness greater than the first thickness. According to the array substrate of the present disclosure, the flexible substrate arranged at the peripheral region is provided with a thickened portion so as to meet the strength requirement of an unfoldable region. Meanwhile, the thickened portion can be formed in a single process through a base plate having a corresponding concave structure, and as a result, it is able to reduce the process complexity.
Abstract:
A display substrate and a display device. The display substrate includes a pixel circuit in which the driving circuit controls a driving current for driving the light emitter element to emit light; the first light emission control circuit applies a first voltage to a first terminal of the driving circuit in response to a first light emission control signal; the second light emission control circuit applies the driving current to the light emitter element in response to a second light emission control signal; the first reset circuit applies a first reset voltage to the control terminal of the driving circuit in response to a first reset signal; the first reset signal and the first light emission control signal are simultaneously turn-on signals during a period; the first light emission control line and the second light emission control line extend along a first direction and are arranged in a second direction.
Abstract:
The present disclosure provides an OLED panel, a driving method thereof and a display device. The OLED panel has pixel units arranged in rows and columns, and each including an OLED device. The OLED panel includes regions arranged in column direction, and each including at least one row of pixel units and a cathode layer, the OLED devices in each region share the cathode layer therein, and the cathode layer of each region is disconnected from the cathode layer of any other region. The OLED panel includes a cathode voltage supply circuit configured to output a cathode voltage including an operating level to the cathode layer. The cathode voltage supply circuit is configured to start outputting the operating level to the cathode layer of at least one region at a time at least later than a time when all pixel units in the region receive a scan signal.
Abstract:
A display panel, and a display device and a drive method thereof are provided. The display panel includes a first array substrate and a second array substrate cell-assembled with each other, and a liquid crystal layer between the first array substrate and the second array substrate. The display panel further includes a plurality of sub-pixel units, and each of the sub-pixel units includes a color film pattern on the first array substrate, an electroluminescent layer on the second array substrate, and driving electrodes for driving the liquid crystal layer and the electroluminescent layer; and the driving electrodes comprise a reflective electrode on the second array substrate and below the electroluminescent layer, a transparent electrode on the electroluminescent layer, and a pixel electrode on the first array substrate.
Abstract:
An array substrate and the method for making the same, and a display device are provided. The method includes step 1, forming a pattern comprising a gate electrode and a gate line on a substrate, and providing photoresist at a position reserved for a first via hole above the gate line in a non-display area; step 2, forming a pattern of functional layers of a thin film transistor (TFT) and a data line on the substrate after the above step; step 3, forming a pattern comprising a first pixel electrode on the substrate after the above steps, and then forming a passivation layer; step 4, removing the photoresist provided above the position reserved for the first via hole and film layer thereabove from the substrate after the above steps, so as to form the first via hole.