Abstract:
The embodiments of the present disclosure provide an imprint template, a detection method and a detection device. The imprint template includes a first region and a second region located in the periphery of the first region. The first region is provided with a first imprint structure configured to imprint a first film layer pattern into a base material in a product region of a target substrate. The second region is provided with a second imprint structure configured to imprint a second film layer pattern into the base material in the periphery of the product region of the target substrate. And the second film layer pattern is used for assessing imprint quality of the first film layer pattern.
Abstract:
Embodiments of the present invention provide a light source structure for optical fiber display device and an optical fiber display device. The light source structure for optical fiber display device comprises a light source. The light source structure for optical fiber display device is of a hollow truncated cone structure, a upper surface, a side surface and a lower surface of the hollow truncated cone structure are constituted by the light source, a reflection cover and an optical fiber connection surface, respectively, a light emitting surface of the light source is disposed to face the optical fiber connection surface, a reflection surface of the reflection cover is provided inside the hollow truncated cone structure, and the optical fiber connection surface has an optical fiber connection region that corresponds to the position of the light source and has a same size as the light source.
Abstract:
A spacer supportability evaluation method and device as well as a computer readable storage medium are provided. The method includes acquiring initial distribution images of spacers and corresponding support pads on a substrate, performing binary grayscaling processing to obtain distribution images of spacers and corresponding support pads, obtaining two binary matrices according to the distribution images, subjecting the two binary matrices to convolution in a spatial domain or to multiplication in a frequency domain to obtain an equivalent support matrix, calculating a number of elements in the equivalent support matrix whose values are a first value to obtain a number of supported pixels. The supportability of spacers is evaluated by acquiring parameters or design drawings of the spacers to calculate suitable size and positional arrangement of each spacer, improving the supportability of spacers and keeps the cell gap of the liquid crystal cell stable and uniform.
Abstract:
A substrate, a display device and a method for manufacturing the substrate are provided. The substrate includes a base substrate and a wire grid array formed on the base substrate, wherein the wire grid array comprises a plurality of metal patterns arranged in sequence, and a width of a side of each of the metal patterns away from the base substrate is smaller than a width of a side of the metal pattern close to the base substrate.
Abstract:
An electrochromic polymer having formula (1), a method for fabricating the same, and a component comprising the same are disclosed. A device fabricated from the electrochromic polymer is capable of varying between purple and transparent and has advantages of easy fabrication, wide viewing angle, rich colors, high contrast, low driving voltage, and reduced response time. The device can realize storage without power consumption, and can be applied to the field of electrochromic display device.
Abstract:
A light emitting device, a fabricating method thereof, and a display device are disclosed. In the light emitting device, a light emitting functional layer includes at least two QD light emitting layers which emit light of different colors, and a transparent insulating layer which is arranged between any two neighboring QD light emitting layers. The light emitting device has a reduced power consumption, and the problem of shift in color of the emitted light due to high-energy excitons transfer is overcome.
Abstract:
A layer structure, a manufacturing method thereof, a display substrate, a backlight and a display device are provided. The manufacturing method includes forming a layer solution on a substrate (21); solidifying the layer solution by lowering the temperature of the layer solution; and forming the layer structure by removing a solvent in the solidified layer solution via a sublimation process.
Abstract:
The present invention provides a liquid crystal panel and a manufacturing method thereof, and a display apparatus comprising the liquid crystal panel, which relates to the field of display technology, and can avoid the problem that the sealant is separated from the first substrate and/or the second substrate while the liquid crystal panel is bent. The liquid crystal panel of the present invention comprises a first substrate and a second substrate, the first substrate and the second substrate are aligned with each other to form a liquid crystal cell, and the liquid crystal cell is sealed with sealant, wherein, at least one convex structure is provided in a region which corresponds to position of the sealant on the first substrate and/or the second substrate.
Abstract:
A single-side light-emitting source, a method for manufacturing the same, and a display device are provided. The single-side light-emitting source includes a base substrate; a plurality of light-shielding patterns on the base substrate; a signal transmission pattern covering the plurality of light-shielding patterns; a plurality of first electrodes; an electroluminescent layer on the first electrodes; and a transparent second electrode layer on the electroluminescent layer. In the above single-side light-emitting source, the first electrodes are on the signal transmission pattern, and an orthographic projection of each first electrode onto the base substrate is within an orthographic projection of a corresponding light-shielding pattern onto the base substrate.
Abstract:
The present disclosure relates to a light-exiting direction adjustment element including a first substrate; a second substrate disposed opposite to the first substrate; a light transmission part disposed between the first substrate and the second substrate; and an adjustment part disposed between the adjacent light transmission parts, wherein the adjustment part includes an electrode control unit and light-shielding charged particles used to shield light passing through the adjustment part under control of the electrode control unit.