Abstract:
A mask cleaning apparatus and a mask cleaning method are provided. The mask cleaning method comprises: placing a mask (100) on a stage (20); and ejecting a dry ice particle group including a plurality of dry ice particles (101) toward a surface of the mask (100) at a speed of 340 m/s to 1000 m/s, within a cleaning time, wherein the plurality of dry ice particles (101) impact the surface of the mask (100) so as to remove a contaminant on the surface of the mask. Thereby, the mask cleaning apparatus and the mask cleaning method provided by embodiments of the present disclosure can remove the contaminant on the mask, without increasing a contamination medium and damaging the surface of the mask.
Abstract:
The disclosure discloses a display control method and apparatus, a computer readable storage medium, and a computer device, where the display control method includes: receiving data of a frame of image to be displayed; determining proportions of numbers of sub-pixels in respective colors at nonzero grayscales in the frame of image to be displayed, according to the data of the frame of image to be displayed; determining a target common voltage value according to the determined proportions; and outputting the target common voltage value to a common electrode to display the image.
Abstract:
Embodiments of the present disclosure relate to an OLED pixel structure and a method for manufacturing the same, an OLED display panel having the OLED pixel structure, and an OLED display device having the OLED display panel. An OLED pixel structure comprises a plurality of sub-pixel units. Each of said sub-pixel units comprises: a first electrode, an organic material functional layer and a second electrode arranged in that order on said substrate plate; and an intermediate layer arranged between said substrate plate and said first electrode; wherein, a surface of said intermediate layer away from said substrate plate has a recess of arc shape; and said first electrode is located within said recess such that said first electrode, said organic material functional layer and said second electrode each has an arc shape corresponding to the arc shape of said recess. With these technical solutions according to the present disclosure, these problems of the narrow angle of view, and of different strengths and colors of the light as being viewed from different viewing angles, can be alleviated.
Abstract:
A mask cleaning apparatus and a mask cleaning method are provided. The mask cleaning method comprises: placing a mask (100) on a stage (20); and ejecting a dry ice particle group including a plurality of dry ice particles (101) toward a surface of the mask (100) at a speed of 340 m/s to 1000 m/s, within a cleaning time, wherein the plurality of dry ice particles (101) impact the surface of the mask (100) so as to remove a contaminant on the surface of the mask. Thereby, the mask cleaning apparatus and the mask cleaning method provided by embodiments of the present disclosure can remove the contaminant on the mask, without increasing a contamination medium and damaging the surface of the mask.
Abstract:
The disclosure discloses a display control method and apparatus, a computer readable storage medium, and a computer device, where the display control method includes: receiving data of a frame of image to be displayed; determining proportions of numbers of sub-pixels in respective colors at nonzero grayscales in the frame of image to be displayed, according to the data of the frame of image to be displayed; determining a target common voltage value according to the determined proportions; and outputting the target common voltage value to a common electrode to display the image.
Abstract:
The present disclosure provides an array substrate and a manufacturing method thereof and an organic light-emitting display apparatus. The array substrate comprises a plurality of sub-pixel zones, each of which comprising a light-emitting unit provided above a base substrate, wherein the light-emitting unit is formed to comprise a concave or convex structure, so that the light-emitting area of the light-emitting unit is greater than the projected area of the light-emitting unit onto the base substrate. Compared to the prior art, the present disclosure can increase the amount of light emission in each sub-pixel zone, so that the view angle of the display may be increased and the display effect may be improved.
Abstract:
The present disclosure provides an array substrate and a manufacturing method thereof and an organic light-emitting display apparatus. The array substrate comprises a plurality of sub-pixel zones, each of which comprising a light-emitting unit provided above a base substrate, wherein the light-emitting unit is formed to comprise a concave or convex structure, so that the light-emitting area of the light-emitting unit is greater than the projected area of the light-emitting unit onto the base substrate. Compared to the prior art, the present disclosure can increase the amount of light emission in each sub-pixel zone, so that the view angle of the display may be increased and the display effect may be improved.
Abstract:
Embodiments of the present disclosure relate to an OLED pixel structure and a method for manufacturing the same, an OLED display panel having the OLED pixel structure, and an OLED display device having the OLED display panel. An OLED pixel structure comprises a plurality of sub-pixel units. Each of said sub-pixel units comprises: a first electrode, an organic material functional layer and a second electrode arranged in that order on said substrate plate; and a flat layer arranged between said substrate plate and said first electrode; wherein, a surface of said flat layer away from said substrate plate has a recess of arc shape; and said first electrode is located within said recess such that said first electrode, said organic material functional layer and said second electrode each has an arc shape corresponding to the arc shape of said recess. With these technical solutions according to the present disclosure, these problems of the narrow angle of view, and of different strengths and colors of the light as being viewed from different viewing angles, can be alleviated.
Abstract:
A display device and an electronic apparatus. The display device includes a display panel, a first circuit board and a second circuit board. The display panel includes a light-outgoing side and a non-light-outgoing side opposite to the light-outgoing side; the first circuit board is electrically connected to the display panel and positioned at the non-light-outgoing side; and the second circuit board is configured to be electrically connected to the first circuit board, and the second circuit board includes a functional circuit in signal connection with the display panel.
Abstract:
A voltage providing circuit includes a first voltage output end, a temperature-sensitive element, a power supply circuit and an output circuit. The power supply circuit is configured to apply a control voltage signal to a control end of the temperature-sensitive element. The temperature-sensitive element is configured to, under the control of the control voltage signal, generate a temperature-related voltage, and output the temperature-related voltage via a first end of the temperature-sensitive element, and a value of the temperature-related voltage changes along with an ambient temperature of the temperature-sensitive element. The output circuit is configured to output a temperature-adaptive voltage via the first voltage output end. A difference between a value of the temperature-adaptive voltage and the value of the temperature-related voltage is within a predetermined range.