Abstract:
The present disclosure relates to the field of display technologies, and particularly discloses a color film substrate, a display panel, a backlight module, a display device and a display system. The color film substrate includes a plurality of pixel units arranged in an array, each of the plurality of pixel units including a first-class filtering unit and a second-class filtering unit, wherein the first-class filtering unit allows visible light to pass through and blocks invisible light, and the second-class filtering unit allows the invisible light to pass through and blocks the visible light.
Abstract:
A slit grating and a three-dimensional (3D) display apparatus including the slit grating are disclosed herein, the slit grating includes a plurality of grating structures (11-17) arranged side by side. The widths of the grating structures (11-17) increase and then decrease, along the direction in which the grating structures (11-17) are arranged. A grating structure (13,14) having the largest width may define a trend change point after which the trend in the widths of the grating structure widths changes.
Abstract:
Embodiments of the present disclosure provide an optical grating and a 3D display device having the same. The optical grating comprises a plurality of grating units arranged from a center of the optical grating towards two sides thereof, values of grating periods of a plurality of said grating units on either side of the center being non-linearly decreased progressively from the center to the side.
Abstract:
Provided are a display driving circuit, a driving method thereof and a display apparatus. The display driving circuit comprises a timing sequence control unit (20) and at least one signal driving unit (30) connected to the timing sequence control unit (20). The timing sequence control unit (20) comprises a receiving module (201), a processing module (202) and a sending module (203). The receiving module (201) receives feedback signals (FB) outputted from respective signal driving units (30) to the timing sequence control unit (20); the processing module (202) obtains a maximum delay time after comparing signal delay time of the signal driving units (30) according to the feedback signals (FB); the sending module (203) sends a second clock signal (CLK2) to respective signal driving units (30) according to the maximum delay time such that respective signal driving units (30) receive the second clock signal (CLK2) simultaneously. Therefore, delay errors of the display driving signals can be eliminated, and distortion of the display image can be avoided.
Abstract:
Embodiments of the present disclosure provide an optical grating and a 3D display device having the same. The optical grating comprises a plurality of grating units arranged from a center of the optical grating towards two sides thereof, values of grating periods of a plurality of said grating units on either side of the center being non-linearly decreased progressively from the center to the side.
Abstract:
A curved grating structure, a display panel and the display device are provided. The curved grating structure includes multiple grating strips spaced from each other. Grating intervals between adjacent grating strips are successively decreased from a center point of the curved grating structure to a terminal of the curved grating structure. The grating interval between two adjacent grating strips is a distance in a first direction between center points of the two adjacent grating strips, and the first direction is a direction perpendicular to a normal vector of the curved grating structure passing through a center point of the curved grating structure.
Abstract:
The present application provides a virtual reality interaction method. The virtual reality interaction method includes acquiring a reference pupil image of a user; determining a pupil position in the reference pupil image; determining a gaze point in a virtual image based on the pupil position in the reference pupil image and a mapping relationship between first coordinates in a first coordinate system of the reference pupil image and second coordinates in a second coordinate system of the virtual image; and executing an operation based on a determination that the gaze point is in an activatable region of the virtual image and a determination of a gaze state.
Abstract:
The present application provides a virtual reality interaction method. The virtual reality interaction method includes acquiring a reference pupil image of a user; determining a pupil position in the reference pupil image; determining a gaze point in a virtual image based on the pupil position in the reference pupil image and a mapping relationship between first coordinates in a first coordinate system of the reference pupil image and second coordinates in a second coordinate system of the virtual image; and executing an operation based on a determination that the gaze point is in an activatable region of the virtual image and a determination of a gaze state.
Abstract:
The present disclosure provides a method, apparatus, and measurement device for measuring distortion parameters of a display device, and a computer-readable medium. The display device includes a display screen and a lens located on a light exiting side of the display screen, and the method includes: acquiring a distortion image which is generated an initial through the lens, wherein the initial image is an image displayed on the display screen, the initial image comprises a plurality of first corner points, and the distortion image comprises a plurality of second corner points which match the plurality of first corner points respectively; and determining the distortion parameters of the display device according to a locational relationship between the second corner points and a first corner points which match the second corner points.
Abstract:
The present disclosure relates to a touch panel controller, a control information acquisition method and a touch display device in the field of display technology. The touch panel controller includes at least two conductive members and a rotating component. The rotating component includes a supporting component and a mounting component connected to each other. The mounting component is configured to have the at least two conductive members mounted thereon. One end of the supporting component is configured to determine a placement surface that is in contact with a touch panel. A distance between each of the at least two conductive members and the placement surface is less than a sensing distance, and the sensing distance is a distance at which a capacitance change caused by the conductive member is detectable by the touch panel. In the present disclosure, a plurality of rotatable conductive members in the controller are used to input a multi-point touch operation such as rotation or multi-point sliding, which solves the problem in the related art that it is difficult for the stylus to accomplish multi-point touch operations and achieves an effect of performing a variety of multi-point touch operations through the controller.