Abstract:
The application discloses a control system of a fire fighting truck for high-rise and super high-rise building firefighting, comprising: a command control equipment (2), a launch control equipment (3), a turret control apparatus (8), and a photoelectric detection equipment (9), wherein, the photoelectric detection equipment (9) comprises: an installing shell, a power supply, a white light zoom camera, an infrared camera, a laser rangefinder, and an integrated processing unit, wherein the white light zoom camera is connected to the installing shell via screws, the infrared camera is connected to the installing shell by using a screw, the laser rangefinder is connected to the installing shell by using a screw, the power supply interface of the white light zoom camera is connected to the power supply by using a wire, the power supply interface of the infrared camera is connected to the power supply by using a wire, the power supply interface of the laser rangefinder is connected to the power supply by using a wire, the data interface of the white light zoom camera is connected to the integrated processing unit by using a wire, the data interface of the infrared camera is connected to the integrated processing unit by using a wire, and the data interface of the laser rangefinder is connected to the integrated processing unit by using a wire.
Abstract:
The present application discloses a control method of a fire fighting truck for high-rise and super high-rise building firefighting, including: a command control equipment (2), a launch control equipment (3), a turret control apparatus (8), a photoelectric detection equipment (9), wherein the photoelectric detection equipment (9) comprises: an installing shell, a power supply, a white light zoom camera, an infrared camera, a laser rangefinder, and an integrated processing unit, the white light zoom camera is connected to the installing shell by a screw, the infrared camera is connected to the installing shell by a screw, the laser rangefinder is connected to the installing shell by a screw, a power supply interface of the white light zoom camera is connected to the power supply by a wire, a power supply interface of the infrared camera is connected to the power supply by a wire, a power supply interface of the laser rangefinder is connected to the power supply by a wire, a data interface of the white light zoom camera is connected to the integrated processing unit by a wire, a data interface of the infrared camera is connected to the integrated processing unit by a wire, and a data interface of the laser rangefinder is connected to the integrated processing unit by a wire.
Abstract:
The present application discloses a control method of a fire fighting truck for high-rise and super high-rise building firefighting, including: a command control equipment (2), a launch control equipment (3), a turret control apparatus (8), a photoelectric detection equipment (9), wherein the photoelectric detection equipment (9) comprises: an installing shell, a power supply, a white light zoom camera, an infrared camera, a laser rangefinder, and an integrated processing unit, the white light zoom camera is connected to the installing shell by a screw, the infrared camera is connected to the installing shell by a screw, the laser rangefinder is connected to the installing shell by a screw, a power supply interface of the white light zoom camera is connected to the power supply by a wire, a power supply interface of the infrared camera is connected to the power supply by a wire, a power supply interface of the laser rangefinder is connected to the power supply by a wire, a data interface of the white light zoom camera is connected to the integrated processing unit by a wire, a data interface of the infrared camera is connected to the integrated processing unit by a wire, and a data interface of the laser rangefinder is connected to the integrated processing unit by a wire.
Abstract:
The application discloses a control system of a fire fighting truck for high-rise and super high-rise building firefighting, comprising: a command control equipment (2), a launch control equipment (3), a turret control apparatus (8), and a photoelectric detection equipment (9), wherein, the photoelectric detection equipment (9) comprises: an installing shell, a power supply, a white light zoom camera, an infrared camera, a laser rangefinder, and an integrated processing unit, wherein the white light zoom camera is connected to the installing shell via screws, the infrared camera is connected to the installing shell by using a screw, the laser rangefinder is connected to the installing shell by using a screw, the power supply interface of the white light zoom camera is connected to the power supply by using a wire, the power supply interface of the infrared camera is connected to the power supply by using a wire, the power supply interface of the laser rangefinder is connected to the power supply by using a wire, the data interface of the white light zoom camera is connected to the integrated processing unit by using a wire, the data interface of the infrared camera is connected to the integrated processing unit by using a wire, and the data interface of the laser rangefinder is connected to the integrated processing unit by using a wire.
Abstract:
Systems and methods based on firing table fitting allow interception of a small low-altitude low-velocity target. A system includes: a target detecting system, a directing control system, a launch control system, an interception execution system, a communication bus a, a communication bus b and a communication bus c. Firing table data under a standard working condition and fitting parameters under different working conditions are pre-stored in the system. Based on target flight data and environment condition parameters, a lead aiming point is predicted, a time sequence of each stage of a fight flow is controlled, and firing data are output to execute an interception by the launch control system. An interception operation is simplified, a ground control of a non-controlled bomb fight flow is realized, a single shot success probability of an interception system is increased, and an interception cost is reduced.