Abstract:
An optical disc device and information recording/reading method for an optical disc in which a recording layer is formed through volume recording by aligning recording tracks, which hold information, in a homogenous recording region that does not internally have a layer defining a recording position. The information recording method includes a step in which a first recording layer forming a complex recording layer is formed by forming a recording track while recording information by focusing a main beam at a predetermined depth position in the recording region, and a step in which a second recording layer forming the complex recording layer is formed by forming a recording track while recording information by focusing the main beam at a depth position that is separated from the first recording layer in a depth direction by a depth offset greater than ⅙ of a wavelength of the main beam.
Abstract:
An optical disc device and information recording/reading method for an optical disc in which a recording layer is formed through volume recording by aligning recording tracks, which hold information, in a homogenous recording region that does not internally have a layer defining a recording position. The information recording method includes a step in which a first recording layer forming a complex recording layer is formed by forming a recording track while recording information by focusing a main beam at a predetermined depth position in the recording region, and a step in which a second recording layer forming the complex recording layer is formed by forming a recording track while recording information by focusing the main beam at a depth position that is separated from the first recording layer in a depth direction by a depth offset greater than ⅙ of a wavelength of the main beam.
Abstract:
The invention makes it possible to measure binding of a biochemical substance with a high throughput and with high sensitivity using a small cell capable of being filled with a small amount of chemical solution. A space between a first substrate and a second substrate such that probes are immobilized on their mutually facing planes is used as a cell that houses a specimen solution. Light is irradiated from a first substrate side, and reflected light is subjected to spectroscopy. Binding of the target with the probe is detected by a wavelength shift in the refection spectrum.
Abstract:
An optical pickup for recording a hologram by using an angle multiplexing method. An optical beam is separated into two beams, a signal beam and a reference beam having different convergence/divergence degrees, by using an optical component such as a diffraction lens. The signal and reference beams are made incident upon the same objective, and the optical component or the objective lens is moved in a direction perpendicular to an optical axis, to thereby realize angle multiplex recording. If an optical information recording medium is inclined, the optical component or the objective lens is moved along the direction along which the optical information recording medium moved to change an angle of the reference beam incident upon the optical information recording medium and compensate for degradation of a reproduction signal.
Abstract:
The compatible type optical pickup device is capable of recording and reproducing optical disks in different disk substrate thickness such as BD and HD DVD or the like. In more detail, an optical pickup can record and reproduce the media of two or more kinds in different substrate thickness using almost identical wavelength or the identical laser source. One is provided as the infinite type optical system and the other is provided as the finite type optical system using an expander lens. Accordingly, the optical disks of different substrate thickness such as BD and HD DVD can be recorded and reproduced with compatibility using the identical wavelength of light.
Abstract:
A pickup and a drive, in a small size, having a spherical aberration correction device capable of correcting various spherical aberration, and coma aberration and/or astigmatism with a low power consumption. A variable-focus lens actuator can correct spherical aberration such that a transparent deformation film warps into a parabolic shape when a magnetic field is applied thereto, thereby changing the light intensity distribution of transmitted light. Further, the variable-focus lens actuator can correct coma aberration and/or astigmatism by arbitrarily tilting the transparent film to change the proceeding direction of the transmitted light.
Abstract:
An optical pickup for recording a hologram by using an angle multiplexing method. An optical beam is separated into two beams, a signal beam and a reference beam having different convergence/divergence degrees, by using an optical component such as a diffraction lens. The signal and reference beams are made incident upon the same objective, and the optical component or the objective lens is moved in a direction perpendicular to an optical axis, to thereby realize angle multiplex recording. If an optical information recording medium is inclined, the optical component or the objective lens is moved along the direction along which the optical information recording medium moved to change an angle of the reference beam incident upon the optical information recording medium and compensate for degradation of a reproduction signal.
Abstract:
A pickup and a drive, in a small size, having a spherical aberration correction device capable of correcting various spherical aberration, and coma aberration and/or astigmatism with a low power consumption. A variable-focus lens actuator can correct spherical aberration such that a transparent deformation film warps into a parabolic shape when a magnetic field is applied thereto, thereby changing the light intensity distribution of transmitted light. Further, the variable-focus lens actuator can correct coma aberration and/or astigmatism by arbitrarily tilting the transparent film to change the proceeding direction of the transmitted light.
Abstract:
An optical pick-up which permits the relative position of a diffracting optical element and a photodetector to be adjusted by feedback control with signals which are generated when more than one kind of diffracted light differing in order is received, the diffracted light occurring as the reflected light from the optical disc is divided and diffracted by the diffracting optical element having multiple regions. The photodetector which detects the light beam passing through the central region of the diffracting optical element and generates RF signals is juxtaposed with sub-photodetectors, so that they receive reflected stray light from out-of-focus layers and perform computation to calculate the reflected stray light component which the RF signal detector receives, thereby detecting only the component of signals of the reflected light from a target layer.
Abstract:
A holographic recording medium in which information can be reproduced by phase conjugate beam without requiring a mirror for obtaining the phase conjugate beam and its driving part and recording density is not reduced. The recording medium includes a recording layer in which an interference pattern is recorded and a light absorption/transmission layer which can be reversibly changed to be in a first state where signal beam and reference beam passed through the recording layer are absorbed at the time of recording of information and a second state where the reference beam is transmitted at the time of reproduction of information, and the reference beam transmitted through the light absorption/transmission layer is reflected by a reflection layer to produce the phase conjugate beam.