摘要:
The invention relates to the surprising and unexpected discovery that a sub-group of phenolic resins (i.e., those which are substantially completely free of ether moieties) is particularly advantageous to confer load building properties to an isocyanate-based foam (e.g., a polyurethane foam). Indeed, its possible to utilize the sub-group of phenolic resins to partially or fully displace copolymer polyols conventionally used to confer load building characteristics to isocyanate-based polymer foams. Further, the invention relates to the surprising and unexpected discovery that a sub-group of phenolic resins (i.e., those which are substantially completely free of ether moieties) is particularly advantageous to confer energy absorption properties in an isocyanate-based foam.
摘要:
The invention relates to the surprising and unexpected discovery that a sub-group of phenolic resins (i.e., those which are substantially completely free of ether moieties) is particularly advantageous to confer load building properties to an isocyanate-based foam (e.g., a polyurethane foam). Indeed, its possible to utilize the sub-group of phenolic resins to partially or fully displace copolymer polyols conventionally used to confer load building characteristics to isocyanate-based polymer foams. Further, the invention relates to the surprising and unexpected discovery that a sub-group of phenolic resins (i.e., those which are substantially completely free of ether moieties) is particularly advantageous to confer energy absorption properties in an isocyanate-based foam.
摘要:
There is described a novoel isocyanate-based polymer foam. The isocyanate-based polymer foam is derived from a reaction mixture comprising: (a) an isocyanate; (b) a mixture of active hydrogen-containing compounds; and (c) a blowing agent. The mixture of active hydrogen-containing compounds comprises: (i) a bio-based polyol having an OH functionality of greater than about 2.0, an OH number in the range of from about 90 to about 200 and a molecular weight (Mn) of at least about 1100, and (ii) a petroleum-based active hydrogen-containing compound. It has been surprisingly and unexpectedly discovered that relatively high amounts (compared to the prior art) of such a bio-based polyol may be incorporated into an isocyanate-based polymer foam while maintaining a desirable balance of properties in the foam. Use of such a bio-based polyol (as a single bio-based polyol or a mixture of bio-based polyols) allows for displacement of at least a portion of petroleum-based polyols conventionally used in the production of isocyanate-based polymer foam while maintaining a desirable balance of properties in the foam, particularly molded foam. The addition benefit is that such displacement is of a component that this non-renewable and relatively more expensive than bio-based polyols.
摘要:
The present invention provides a method enabling segregation of the various ingredients making up the polymer based products into component product streams and collection of these component streams so as to form individual product streams. Thus, according to this invention there is provided a process for purposefully segregating polymer-polymer and polymer-additive mixtures. The process for segregating the various combinations of components may be advantageously used on the one hand for the production of separate product streams from a mixture of polymers or polymer-additives in, for example, recycling of waste plastic based products, or on the other hand, in the production of polymer-polymer or polymer-additive layered structures exhibiting preselected spatial segregation of the various components. In its simplest form, the polymer segregation part of the process consists of a tube added to an extruder. During segregation, polymer layers containing different blend compositions are formed. Operating conditions are selected to enhance differences in viscosity between polymer components. This includes addition of low viscosity grades of one of the polymer components present to encourage migration of that component to the high shear region of the flow. Segregation may occur in either the extruder or in a tube added onto the end of the extruder, or in both. Preferential segregation of additives into one or more of the polymer layers can also be effected. Addition of components which attract the additives to be segregated provide a method of segregating a wide variety of additives.