Abstract:
An apparatus for deposition of a layer stack on a non-flexible substrate or on a substrate provided in a carrier is described. The apparatus includes a vacuum chamber, a transport system, wherein the transport system and the vacuum chamber are configured for inline deposition, a first support for a first rotatable sputter cathode rotatable around a first rotation axis within the vacuum chamber, wherein a first deposition zone for depositing a first material is provided, a second support for a second rotatable sputter cathode rotatable around a second rotation axis within the vacuum chamber, wherein a second deposition zone for depositing a second material is provided, wherein the first rotation axis and the second rotation axis have a distance from each other of 700 mm or below; and a separator structure between the first rotation axis and the second rotation axis, adapted to receive the first material sputtered towards the second deposition zone and the second material sputtered towards the first deposition zone, wherein apparatus is configured for deposition of the layer stack comprising a layer of the first material and a subsequent layer of the second material.
Abstract:
According to one aspect of the present disclosure, an optical inspection system for inspecting a flexible substrate is provided. The system includes a substrate support with an at least partially convex substrate support surface configured to guide the substrate along a substrate transportation path, the substrate support being arranged on a first side of the substrate transportation path; a light source arranged on a second side of the substrate transportation path and configured to direct a light beam through a portion of the substrate which is supported on and in contact with the convex substrate support surface; and a light detector for conducting a transmission measurement of the substrate. According to a further aspect of the present disclosure, methods of inspecting a flexible substrate are provided.