COMPILING CODE FOR A MACHINE LEARNING MODEL FOR EXECUTION ON A SPECIALIZED PROCESSOR

    公开(公告)号:US20200379740A1

    公开(公告)日:2020-12-03

    申请号:US16583191

    申请日:2019-09-25

    Applicant: Apple Inc.

    Abstract: The subject technology receives a neural network model in a model format, the model format including information for a set of layers of the neural network model, each layer of the set of layers including a set of respective operations. The subject technology generates neural network (NN) code from the neural network model, the NN code being in a programming language distinct from the model format, and the NN code comprising a respective memory allocation for each respective layer of the set of layers of the neural network model, where the generating comprises determining the respective memory allocation for each respective layer based at least in part on a resource constraint of a target device. The subject technology compiles the NN code into a binary format. The subject technology generates a package for deploying the compiled NN code on the target device.

    COMPILING MODELS FOR DEDICATED HARDWARE
    3.
    发明申请

    公开(公告)号:US20200082274A1

    公开(公告)日:2020-03-12

    申请号:US16262809

    申请日:2019-01-30

    Applicant: Apple Inc.

    Abstract: The subject technology provides receiving a neural network (NN) model to be executed on a target platform, the NN model including multiple layers that include operations and some of the operations being executable on multiple processors of the target platform. The subject technology further sorts the operations from the multiple layers in a particular order based at least in part on grouping the operations that are executable by a particular processor of the multiple processors. The subject technology determines, based at least in part on a cost of transferring the operations between the multiple processors, an assignment of one of the multiple processors for each of the sorted operations of each of the layers in a manner that minimizes a total cost of executing the operations. Further, for each layer of the NN model, the subject technology includes an annotation to indicate the processor assigned for each of the operations.

    COMPILING MODELS FOR DEDICATED HARDWARE

    公开(公告)号:US20250131286A1

    公开(公告)日:2025-04-24

    申请号:US19000562

    申请日:2024-12-23

    Applicant: Apple Inc.

    Abstract: The subject technology provides receiving a neural network (NN) model to be executed on a target platform, the NN model including multiple layers that include operations and some of the operations being executable on multiple processors of the target platform. The subject technology further sorts the operations from the multiple layers in a particular order based at least in part on grouping the operations that are executable by a particular processor of the multiple processors. The subject technology determines, based at least in part on a cost of transferring the operations between the multiple processors, an assignment of one of the multiple processors for each of the sorted operations of each of the layers in a manner that minimizes a total cost of executing the operations. Further, for each layer of the NN model, the subject technology includes an annotation to indicate the processor assigned for each of the operations.

Patent Agency Ranking