Abstract:
An electronic device such as a device with a display may have a force sensor. The force sensor may include capacitive electrodes separated by a deformable layer such as a layer of an elastomeric polymer. The display or other layers in the electronic device may deform inwardly under applied force from a finger of a user or other external object. As the deformed layers contact the deformable layer, the deformable layer is compressed and the spacing between the capacitive electrodes of the force sensor decreases. This causes a measurable rise in the capacitance signal and therefore the force signal output of the force sensor. To prevent the deformable layer from sticking to the inner surface of the display layers, air flow promotion structures may be interposed between the deformable layer and the inner surface of the display. The air flow promotion structures may include spacer pads with anti-stick surfaces.
Abstract:
An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.
Abstract:
An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.
Abstract:
An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.
Abstract:
An electronic device such as a device with a display may have a force sensor. The force sensor may include capacitive electrodes separated by a deformable layer such as a layer of an elastomeric polymer. The display or other layers in the electronic device may deform inwardly under applied force from a finger of a user or other external object. As the deformed layers contact the deformable layer, the deformable layer is compressed and the spacing between the capacitive electrodes of the force sensor decreases. This causes a measurable rise in the capacitance signal and therefore the force signal output of the force sensor. To prevent the deformable layer from sticking to the inner surface of the display layers, air flow promotion structures may be interposed between the deformable layer and the inner surface of the display. The air flow promotion structures may include spacer pads with anti-stick surfaces.