Abstract:
One embodiment provides for a non-transitory machine-readable medium storing instructions to cause one or more processors to perform operations comprising receiving an instruction to dynamically allocate memory for an object of a data type and dynamically allocating memory for the object from a heap instance that is specific to the data type for the object, the heap instance including a memory allocator for the data type, the memory allocator generated at compile time for the instruction based on a specification of the data type for the heap instance.
Abstract:
A method and an apparatus that modify pointer values pointing to typed data with type information are described. The type information can be automatically checked against the typed data leveraging hardware based safety check mechanisms when performing memory access operations to the typed data via the modified pointer values. As a result, hardware built in logic can be used for a broad class of programming language safety check when executing software codes using modified pointers that are subject to the safety check without executing compare and branch instructions in the software codes.
Abstract:
In an embodiment, dynamically-generated code may be supported in the system by ensuring that the code either remains executing within a predefined region of memory or exits to one of a set of valid exit addresses. Software embodiments are described in which the dynamically-generated code is scanned prior to permitting execution of the dynamically-generated code to ensure that various criteria are met including exclusion of certain disallowed instructions and control of branch target addresses. Hardware embodiments are described in which the dynamically-generated code is permitted to executed but is monitored to ensure that the execution criteria are met.
Abstract:
Aspects and features include a structure for a program directed to a target computing device and metadata that can be used by a verifier in the target computing device. The verifier can quickly and efficiently apply verification rules to identified sections of the program to determine whether the program is safe to execute by the target computing device. In some examples, the target computing device uses the verifier to identify, using the metadata, verifiable sections of instructions that violate execution safety policies. The verifier can apply verification rules to the verifiable sections to determine whether to execute each verifiable section despite instructions in the verifiable section violating execution safety policies. The program and the metadata can be generated, as an example, by a compiler from source code, and transmitted or otherwise distributed to target computing devices.
Abstract:
One embodiment provides for a non-transitory machine-readable medium storing instructions to cause one or more processors to perform operations comprising receiving an instruction to dynamically allocate memory for an object of a data type and dynamically allocating memory for the object from a heap instance that is specific to the data type for the object, the heap instance including a memory allocator for the data type, the memory allocator generated at compile time for the instruction based on a specification of the data type for the heap instance.
Abstract:
A method and an apparatus that optimize operations for a key among a collection of key indexed data structures using meta data describing properties of the key with respect to the collection of data structures are described. The meta data may correspond to a cache dynamically updated to indicate invariants which are true for the key in a current state of the collection of data structures. Expensive calculations to search through the collection of data structures for the key may be avoided. For example, costly lookup operations over a collection of data structures may not be required at all if a key is known to always (or to never) reference certain specific values, or for these values to have certain meta-properties, in any of the collection of data structure globally throughout a system at a current state.
Abstract:
A method and an apparatus that modify pointer values pointing to typed data with type information are described. The type information can be automatically checked against the typed data leveraging hardware based safety check mechanisms when performing memory access operations to the typed data via the modified pointer values. As a result, hardware built in logic can be used for a broad class of programming language safety check when executing software codes using modified pointers that are subject to the safety check without executing compare and branch instructions in the software codes.
Abstract:
A method and an apparatus that optimize operations for a key among a collection of key indexed data structures using meta data describing properties of the key with respect to the collection of data structures are described. The meta data may correspond to a cache dynamically updated to indicate invariants which are true for the key in a current state of the collection of data structures. Expensive calculations to search through the collection of data structures for the key may be avoided. For example, costly lookup operations over a collection of data structures may not be required at all if a key is known to always (or to never) reference certain specific values, or for these values to have certain meta-properties, in any of the collection of data structure globally throughout a system at a current state.
Abstract:
One embodiment provides for a non-transitory machine-readable medium storing instructions to cause one or more processors to perform operations comprising receiving an instruction to dynamically allocate memory for an object of a data type and dynamically allocating memory for the object from a heap instance that is specific to the data type for the object, the heap instance including a memory allocator for the data type, the memory allocator generated at compile time for the instruction based on a specification of the data type for the heap instance.
Abstract:
In an embodiment, dynamically-generated code may be supported in the system by ensuring that the code either remains executing within a predefined region of memory or exits to one of a set of valid exit addresses. Software embodiments are described in which the dynamically-generated code is scanned prior to permitting execution of the dynamically-generated code to ensure that various criteria are met including exclusion of certain disallowed instructions and control of branch target addresses. Hardware embodiments are described in which the dynamically-generated code is permitted to executed but is monitored to ensure that the execution criteria are met.