Abstract:
Systems, methods, and computer readable media to fuse digital images are described. In general, techniques are disclosed that use multi-band noise reduction techniques to represent input and reference images as pyramids. Once decomposed in this manner, images may be fused using novel low-level (noise dependent) similarity measures. In some implementations similarity measures may be based on intra-level comparisons between reference and input images. In other implementations, similarity measures may be based on inter-level comparisons. In still other implementations, mid-level semantic features such as black-level may be used to inform the similarity measure. In yet other implementations, high-level semantic features such as color or a specified type of region (e.g., moving, stationary, or having a face or other specified shape) may be used to inform the similarity measure.
Abstract:
Systems, methods, and computer readable media to capture and process high dynamic range (HDR) images when appropriate for a scene are disclosed. When appropriate, multiple images at a single—slightly underexposed—exposure value are captured (making a constant bracket HDR capture sequence) and local tone mapping (LTM) applied to each image. Local tone map and histogram information can be used to generate a noise-amplification mask which can be used during fusion operations. Images obtained and fused in the disclosed manner provide high dynamic range with improved noise and de-ghosting characteristics.
Abstract:
Image enhancement is achieved by separating image signals, e.g. YCbCr image signals, into a series of frequency bands and performing locally-adaptive noise reduction on bands below a given frequency but not on bands above that frequency. The bands are summed to develop the image enhanced signals. The YCbCr, multi-band locally-adaptive approach to denoising is able to operate independently—and in an optimized fashion—on both luma and chroma channels. Noise reduction is done based on models developed for both luma and chroma channels by measurements taken for multiple frequency bands, in multiple patches on the ColorChecker chart, and at multiple gain levels, in order to develop a simple yet robust set of models that may be tuned off-line a single time for each camera and then applied to images taken by such cameras in real-time without excessive processing requirements and with satisfactory results across illuminant types and lighting conditions.
Abstract:
Techniques for de-noising a digital image using a multi-band noise filter and a unique combination of texture and chroma metrics are described. A novel texture metric may be used during multi-band filter operations on an image's luma channel to determine if a given pixel is associated with a textured/smooth region of the image. A novel chroma metric may be used during the same multi-band filter operation to determine if the same pixel is associated with a blue/not-blue region of the image. Pixels identified as being associated with a smooth blue region may be aggressively de-noised and conservatively sharpened. Pixels identified as being associated with a textured blue region may be conservatively de-noised and aggressively sharpened. By coupling texture and chroma constraints it has been shown possible to mitigate noise in an image's smooth blue regions without affecting the edges/texture in other blue objects.
Abstract:
Image enhancement is achieved by separating image signals, e.g. YCbCr image signals, into a series of frequency bands and performing noise reduction on bands below a given frequency but not on bands above that frequency. The bands are summed to develop the image enhanced signals. The YCbCr, multi-band approach to denoising is able to operate independently—and in an optimized fashion—on both luma and chroma channels. Noise reduction is done based on models developed for both luma and chroma channels by measurements taken for multiple frequency bands, in multiple patches on the ColorChecker chart, and at multiple gain levels, in order to develop a simple yet robust set of models that may be tuned off-line a single time for each camera and then applied to images taken by such cameras in real-time without excessive processing requirements and with satisfactory results across illuminant types and lighting conditions.
Abstract:
Systems, methods, and computer readable media to fuse digital images are described. In general, techniques are disclosed that use multi-band noise reduction techniques to represent input and reference images as pyramids. Once decomposed in this manner, images may be fused using novel low-level (noise dependent) similarity measures. In some implementations similarity measures may be based on intra-level comparisons between reference and input images. In other implementations, similarity measures may be based on inter-level comparisons. In still other implementations, mid-level semantic features such as black-level may be used to inform the similarity measure. In yet other implementations, high-level semantic features such as color or a specified type of region (e.g., moving, stationary, or having a face or other specified shape) may be used to inform the similarity measure.
Abstract:
Image enhancement is achieved by separating image signals, e.g. YCbCr image signals, into a series of frequency bands and performing locally-adaptive noise reduction on bands below a given frequency but not on bands above that frequency. The bands are summed to develop the image enhanced signals. The YCbCr, multi-band locally-adaptive approach to denoising is able to operate independently—and in an optimized fashion—on both luma and chroma channels. Noise reduction is done based on models developed for both luma and chroma channels by measurements taken for multiple frequency bands, in multiple patches on the ColorChecker chart, and at multiple gain levels, in order to develop a simple yet robust set of models that may be tuned off-line a single time for each camera and then applied to images taken by such cameras in real-time without excessive processing requirements and with satisfactory results across illuminant types and lighting conditions.
Abstract:
Image enhancement is achieved by separating image signals, e.g. YCbCr image signals, into a series of frequency bands and performing noise reduction on bands below a given frequency but not on bands above that frequency. The bands are summed to develop the image enhanced signals. The YCbCr, multi-band approach to denoising is able to operate independently—and in an optimized fashion—on both luma and chroma channels. Noise reduction is done based on models developed for both luma and chroma channels by measurements taken for multiple frequency bands, in multiple patches on the ColorChecker chart, and at multiple gain levels, in order to develop a simple yet robust set of models that may be tuned off-line a single time for each camera and then applied to images taken by such cameras in real-time without excessive processing requirements and with satisfactory results across illuminant types and lighting conditions.
Abstract:
Systems, methods, and computer readable media to capture and process high dynamic range (HDR) images when appropriate for a scene are disclosed. When appropriate, multiple images at a single—slightly underexposed—exposure value are captured (making a constant bracket HDR capture sequence) and local tone mapping (LTM) applied to each image. Local tone map and histogram information can be used to generate a noise-amplification mask which can be used during fusion operations. Images obtained and fused in the disclosed manner provide high dynamic range with improved noise and de-ghosting characteristics.
Abstract:
Techniques of reducing or eliminating artifact pixels in high dynamic range (HDR) imaging are described. One embodiment includes obtaining a first image of a scene at a first time with first exposure settings and obtaining a second image of the scene at a second time with second exposure settings that differ from the first exposure settings. The obtained images may be downsampled. The images may be compared to each other to assist with determining a number of potential artifact pixels in the scene. Depending on a relationship between the number of potential artifact pixels and a threshold value, the first image or second image may be selected as a reference image for registering the images with each other. A type of registration performed between the images may depend on which of the two images is the selected reference image. The registered images may be used to generate an HDR image.