Abstract:
In some embodiments, a method may include an area-aware optimization for the test patterns. The method may include dividing the chip area into a grid. The grid may be based on the smallest particle size. The method may include preparing test patterns and identifying a subset of test patterns that touch all of the grid locations. The subset may include a minimum number of test patterns from the prepared test patterns which when implemented exercise the all of the grid locations. The method allows to more quickly determine chips that fail due to extrinsic defects. Once a test fails during the testing process for a chip, testing on the chip is stopped and testing begins on the next chip. Rapidly identifying chips that fail due to extrinsic failures can decrease the overall test time and identify those that will fail quickly as the chip process matures and is dominated by extrinsic failures.
Abstract:
In an embodiment, an integrated circuit includes a clock tree circuit and logic circuitry that is clocked by the clocks received from the clock tree circuit. The logic circuit is powered by a first power supply voltage. The integrated circuit includes a voltage regulator that receives the first power supply voltage and generates a second power supply voltage having a magnitude that is lower than the magnitude of the first power supply voltage by a predetermined amount. The second power supply voltage may track the first power supply voltage over dynamic changes during use, either intentional changes to operating state or noise-induced changes. The second power supply voltage may be used to power at least a portion of the clock tree.
Abstract:
In an embodiment, an integrated circuit may include edge triggered flops that launch data to start a clock cycle and that capture data at the end of the clock cycle. Combinatorial logic circuitry may be coupled between the launching and capturing flops, and may be configured to operate on the launched data to generate result data for the capturing flops. One or more latches may be provided in the combinatorial logic circuitry, which may close and capture intermediate values responsive to an opposite edge of the clock than the edge that triggers the edge-triggered flops. In an embodiment, the clock to the latches may be gated with an enable. When the integrated circuit is not operating in the subthreshold voltage region, the enable may be in the disabled state. When operating in the subthreshold voltage region, the enable may be in the enabled state.
Abstract:
A number of scan flops clocked by a master clock may be used to constructing a scan chain to perform scan tests. During a scan test, data appearing at the regular data input of each scan flop may be written into a master latch of the scan flop during a time period when the scan control signal is in a state corresponding to a capture cycle. A slave latch in each scan flop may latch a value appearing at the regular data input of the scan flop according to a narrow pulse triggered by the rising edge of the master clock when the scan control signal is in the state corresponding to the capture cycle. The slave latch may latch the data provided by the master latch according to a wide pulse triggered by the rising edge of the master clock when the scan control signal is in a state corresponding to a shift cycle. This may permit toggling the scan control signal during either a high phase or a low phase of the master clock, and may also enable testing the pulse functionality of each scan flop.
Abstract:
A software tool and method for analyzing the reliability or failure rate of an integrated circuit (IC) are disclosed. The IC may include a plurality of circuit designs, and the software tool and method may aid a designer of the IC in determining a reliability rating of the IC based on reliability ratings of transistors or other circuit devices used in the circuit designs. In particular, the IC may include one or more circuit designs that have multiple instances within the IC (i.e., the same circuit design is instantiated multiple times), and the software tool and method may take into account the multiple instances when determining the reliability rating of the IC.
Abstract:
In some embodiments, a method may include an area-aware optimization for the test patterns. The method may include dividing the chip area into a grid. The grid may be based on the smallest particle size. The method may include preparing test patterns and identifying a subset of test patterns that touch all of the grid locations. The subset may include a minimum number of test patterns from the prepared test patterns which when implemented exercise the all of the grid locations. The method allows to more quickly determine chips that fail due to extrinsic defects. Once a test fails during the testing process for a chip, testing on the chip is stopped and testing begins on the next chip. Rapidly identifying chips that fail due to extrinsic failures can decrease the overall test time and identify those that will fail quickly as the chip process matures and is dominated by extrinsic failures.
Abstract:
In some embodiments, a system and/or method may test logic blocks for an integrated circuit. To alleviate problems associated with current methods of integrated circuit testing, a system may include a power switch control signal on a different voltage rail. In some embodiments, a Test VDD may be used to isolate the power switches from the rest of the logic cells in an integrated circuit. During testing, each logic block may be powered individually using the Test VDD to control the power switches to the logic blocks. When a logic block short is identified, the nonviable logic block may be isolated to such that the nonviable logic block is not used during the future and only viable logic blocks are used in the integrated circuit. This allows for use of logic within an integrated circuit that might otherwise have been discarded or destroyed because of one or more shorts.
Abstract:
In an embodiment, an integrated circuit includes a clock tree circuit and logic circuitry that is clocked by the clocks received from the clock tree circuit. The logic circuit is powered by a first power supply voltage. The integrated circuit includes a voltage regulator that receives the first power supply voltage and generates a second power supply voltage having a magnitude that is lower than the magnitude of the first power supply voltage by a predetermined amount. The second power supply voltage may track the first power supply voltage over dynamic changes during use, either intentional changes to operating state or noise-induced changes. The second power supply voltage may be used to power at least a portion of the clock tree.
Abstract:
A number of scan flops clocked by a master clock may be used to constructing a scan chain to perform scan tests. During a scan test, data appearing at the regular data input of each scan flop may be written into a master latch of the scan flop during a time period when the scan control signal is in a state corresponding to a capture cycle. A slave latch in each scan flop may latch a value appearing at the regular data input of the scan flop according to a narrow pulse triggered by the rising edge of the master clock when the scan control signal is in the state corresponding to the capture cycle. The slave latch may latch the data provided by the master latch according to a wide pulse triggered by the rising edge of the master clock when the scan control signal is in a state corresponding to a shift cycle. This may permit toggling the scan control signal during either a high phase or a low phase of the master clock, and may also enable testing the pulse functionality of each scan flop.