摘要:
This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region.
摘要:
This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region.
摘要:
This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region.
摘要:
This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region.
摘要:
This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region.
摘要:
This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region.
摘要:
This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
摘要:
A semiconductor device comprises a drain, a body in contact with the drain, the body having a body top surface, a source embedded in the body, extending downward from the body top surface into the body, a trench extending through the source and the body to the drain, and a gate disposed in the trench, having a gate top surface that extends substantially above the body top surface. A method of fabricating a semiconductor device comprises forming a hard mask on a substrate having a top substrate surface, forming a trench in the substrate, through the hard mask, depositing gate material in the trench, where the amount of gate material deposited in the trench extends beyond the top substrate surface, and removing the hard mask to leave a gate structure that extends substantially above the top substrate surface.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.