Abstract:
In a system and method for open fitting hearing aid frequency response sound measurements, a test space is provided having located therein a sound source, a hearing aid with a microphone, and an open fit receiver. An acoustic shield is provided and within the acoustic shield an ear simulator coupler is provided having an ear extension attached thereto, the ear extension having mounted thereto at least a portion of the open fit receiver. A measurement unit receives sound signals from the ear simulator coupler.
Abstract:
In a system and method for open fitting hearing aid frequency response sound measurements, a test space is provided having located therein a sound source, a hearing aid with a microphone, and an open fit receiver. An acoustic shield is provided and within the acoustic shield an ear simulator coupler is provided having an ear extension attached thereto, the ear extension having mounted thereto at least a portion of the open fit receiver. A measurement unit receives sound signals from the ear simulator coupler.
Abstract:
In order to protect a microphone from moisture and/or dirt, there is provided a microphone protective device that needs only relatively little space for installation into an electroacoustic device for a relatively large effective surface area. For this purpose, the novel microphone protective device has an at least partially cylindrical-shell-shaped membrane, for preventing dirt and/or moisture from entering a sound inlet opening of the microphone.
Abstract:
In order to protect a microphone from moisture and/or dirt, there is provided a microphone protective device that needs only relatively little space for installation into an electroacoustic device for a relatively large effective surface area. For this purpose, the novel microphone protective device has an at least partially cylindrical-shell-shaped membrane, for preventing dirt and/or moisture from entering a sound inlet opening of the microphone.
Abstract:
An ear piece is formed for insertion and placement in an external auditory canal. The ear piece has an inflatable which, when it is inflated, expands and braces against the walls of the auditory canal. When it is deflated, it may be withdrawn from the auditory canal. The ear piece may be used in connection with a hearing aid, an MP3 player, a cell phone, or the like. A pump is provided for inflating the balloon and a valve may be controlled for selectively deflating the balloon. The air intake to the pump is disposed so as to be protected against contamination from inside the auditory canal. For that purpose it is formed inside a housing the air inlet of which is as far outside the ear canal as possible. In the case of a behind-the-ear application, the intake opening is formed in the housing that is to be placed behind the user's ear.
Abstract:
With a hearing aid device which can be worn in the ear, a barometric pressure equalization which is needed for the sound transducer, such as a microphone or receiver, is to be achieved in a simple and cost-effective fashion. To this end, a converter protection facility is proposed with a membrane, with a pressure equalization channel, which connects a sound channel to the interior of the hearing aid device, extends through the transducer protection facility at least in one section. Replacing the transducer protection facility thus also replaces this subsection of the pressure equalization channel. A possible blockage of the pressure equalization channel which exists in this region as a result of dirt or moisture is eliminated as a result.
Abstract:
An ear piece is formed for insertion and placement in an external auditory canal. The ear piece has an inflatable which, when it is inflated, expands and braces against the walls of the auditory canal. When it is deflated, it may be withdrawn from the auditory canal. The ear piece may be used in connection with a hearing aid, an MP3 player, a cell phone, or the like. A pump is provided for inflating the balloon and a valve may be controlled for selectively deflating the balloon. The air intake to the pump is disposed so as to be protected against contamination from inside the auditory canal. For that purpose it is formed inside a housing the air inlet of which is as far outside the ear canal as possible. In the case of a behind-the-ear application, the intake opening is formed in the housing that is to be placed behind the user's ear.
Abstract:
With a hearing aid device which can be worn in the ear, a barometric pressure equalization which is needed for the sound transducer, such as a microphone or receiver, is to be achieved in a simple and cost-effective fashion. To this end, a converter protection facility is proposed with a membrane, with a pressure equalization channel, which connects a sound channel to the interior of the hearing aid device, extends through the transducer protection facility at least in one section. Replacing the transducer protection facility thus also replaces this subsection of the pressure equalization channel. A possible blockage of the pressure equalization channel which exists in this region as a result of dirt or moisture is eliminated as a result.
Abstract:
In a method for adapting a hearing aid, and a hearing aid arrangement for improving the directivity of a hearing aid with a number of microphones that are connected to one another for generating a directional characteristic, the hearing aid is exposed to acoustic waves in a room for precision measuring while the user is wearing it, and the directional characteristic is registered. The filter parameters that arise therefrom are supplied to parameterizable filters in the hearing aid that are connected downstream from the microphones, and the desired ideal directional characteristic can be approximated taking the individual conditions into account when the hearing aid is worn.
Abstract:
A hearing aid device that can be directly inserted in the ear or worn with an otoplastic that can be inserted in the ear has an arrangement for adjusting the ventilation channel that is situated in the ventilation channel or at an opening of the ventilation channel. The arrangement has one or more adjustment elements that is/are positioned by electrical and/or magnetic miniature drives, initiated by corresponding operating elements or by the signal processing unit of the hearing aid device, or by programming the hearing aid device.