摘要:
Disclosed herein is a method of fabricating an antenna in which a flexible stamp is formed from a first wafer, the first wafer transferring a pattern to the flexible stamp, in which an antenna substrate is shaped into a three-dimensional contour with a second mold, in which the flexible stamp is positioned in the second mold to deform the flexible stamp into the three-dimensional contour, and in which a metallic layer on the flexible stamp is cold welded to create a set of antenna traces on the antenna substrate in accordance with the pattern. The antenna traces may then be electroplated.
摘要:
An antenna includes a dielectric substrate having a three-dimensional contour, and a set of antenna traces on the dielectric substrate. Each antenna trace spirals around the three-dimensional contour in a helical pattern. Each antenna trace includes a plated metallic layer.
摘要:
Disclosed herein is a method of fabricating an antenna in which a flexible stamp is formed from a first wafer, the first wafer transferring a pattern to the flexible stamp, in which an antenna substrate is shaped into a three-dimensional contour with a second mold, in which the flexible stamp is positioned in the second mold to deform the flexible stamp into the three-dimensional contour, and in which a metallic layer on the flexible stamp is cold welded to create a set of antenna traces on the antenna substrate in accordance with the pattern. The antenna traces may then be electroplated.
摘要:
An elastomeric stamp is used to deposit material on a non-planar substrate. A vacuum mold is used to deform the elastomeric stamp and pressure is applied to transfer material from the stamp to the substrate. By decreasing the vacuum applied by the vacuum mold, the elasticity of the stamp may be used to apply this pressure. Pressure also may be applied by applying a force to the substrate and/or the stamp. The use of an elastomeric stamp allows for patterned layers to be deposited on a non-planar substrate with reduced chance of damage to the patterned layer.
摘要:
A method of fabricating an optoelectronic device includes creating an optoelectronic structure on a first substrate. The optoelectronic structure includes a release layer and a plurality of inorganic semiconductor layers supported by the release layer. The plurality of inorganic semiconductor layers is configured to be active in operation of the optoelectronic device. The plurality of inorganic semiconductor layers are permanently attached to a second substrate, which is flexible. The plurality of inorganic semiconductor layers are released from the first substrate after the attaching step, and the second substrate is deformed to a non-planar configuration.
摘要:
An optoelectronic device may be fabricated on a three dimensional surface by transferring a material from an elastomeric stamp to a non-planar substrate. The use of an elastomeric stamp allows for patterned layers to be deposited on a non-planar substrate with reduced chance of damage to the patterned layer. The material may be deposited on the stamp while the stamp is in a planar configuration or after the stamp has been deformed to a shape generally the same as the shape of the non-planar substrate. The material may be transferred by cold welding. The device may include organic layers.
摘要:
A device includes a three-dimensionally curved substrate, a patterned metal layer disposed on the curved substrate, and an array of optoelectronic devices, each optoelectronic device including an optoelectronic structure supported by the curved substrate. Each optoelectronic structure includes an inorganic semiconductor stack. The device further includes a set of contact stripes extending across the curved substrate, each optoelectronic structure being coupled to a respective contact stripe of the set of contact stripes. The array of optoelectronic devices is secured to the curved substrate via a bond between the patterned metal layer and the set of contact stripes.
摘要:
A method of fabricating an optoelectronic device includes creating an optoelectronic structure on a first substrate. The optoelectronic structure includes a release layer and a plurality of inorganic semiconductor layers supported by the release layer. The plurality of inorganic semiconductor layers is configured to be active in operation of the optoelectronic device. The plurality of inorganic semiconductor layers are permanently attached to a second substrate, which is flexible. The plurality of inorganic semiconductor layers are released from the first substrate after the attaching step, and the second substrate is deformed to a non-planar configuration.
摘要:
An elastomeric stamp is used to deposit material on a non-planar substrate. A vacuum mold is used to deform the elastomeric stamp and pressure is applied to transfer material from the stamp to the substrate. By decreasing the vacuum applied by the vacuum mold, the elasticity of the stamp may be used to apply this pressure. Pressure also may be applied by applying a force to the substrate and/or the stamp. The use of an elastomeric stamp allows for patterned layers to be deposited on a non-planar substrate with reduced chance of damage to the patterned layer.
摘要:
A device includes a three-dimensionally curved substrate, a patterned metal layer disposed on the curved substrate, and an array of optoelectronic devices, each optoelectronic device including an optoelectronic structure supported by the curved substrate. Each optoelectronic structure includes an inorganic semiconductor stack. The device further includes a set of contact stripes extending across the curved substrate, each optoelectronic structure being coupled to a respective contact stripe of the set of contact stripes. The array of optoelectronic devices is secured to the curved substrate via a bond between the patterned metal layer and the set of contact stripes.