Abstract:
A rectification error reducer for a fiber optic gyroscope, which is an intensity servo or compensator for reducing vibration effects in the optical signals caused by modulation at vibration frequencies induced by the gyroscope-operating environment. The vibration effects may be detected in signals from the photodiode output in amplitude form, which is used in a control system to null out optical intensity variations at the frequencies of vibration.
Abstract:
A rectification error reducer for a fiber optic gyroscope, which is an intensity servo or compensator for reducing vibration effects in the optical signals caused by modulation at vibration frequencies induced by the gyroscope operating environment. The vibration effects may be detected in signals from the photodiode output in amplitude form which is used in a control system to null out optical intensity variations at the frequencies of vibration.
Abstract:
A rectification error reducer for a fiber optic gyroscope, which is an intensity servo or compensator for reducing vibration effects in the optical signals caused by modulation at vibration frequencies induced by the gyroscope operating environment. The vibration effects may be detected in signals from the photodiode output in amplitude form which is used in a control system to null out optical intensity variations at the frequencies of vibration.
Abstract:
A pumped rare-earth fiber source wavelength control device, having source wavelength control effected by pump source wavelength and power control. The maintaining of pump wavelength and power control can be attained several ways such as by use of a wavelength sensitive coupler, a short length of fiber having an embedded grating, and a modulated grating embedded fiber.
Abstract:
A hollow-core optical-fiber filter is provided. The hollow-core optical-fiber filter includes a hollow-core optical fiber having a first end-face and an opposing second end-face. The first end-face and the second end-face set a fiber length. The hollow-core optical-fiber filter also includes a first reflective end-cap positioned at the first end-face and a second reflective end-cap positioned at the second end-face. When an optical beam from a laser is coupled into one of the first end-face or the second end-face, an optical output from the opposing end-face has a narrow linewidth and low frequency noise fluctuations.
Abstract:
A hollow-core optical-fiber filter is provided. The hollow-core optical-fiber filter includes a hollow-core optical fiber having a first end-face and an opposing second end-face. The first end-face and the second end-face set a fiber length. The hollow-core optical-fiber filter also includes a first reflective end-cap positioned at the first end-face and a second reflective end-cap positioned at the second end-face. When an optical beam from a laser is coupled into one of the first end-face or the second end-face, an optical output from the opposing end-face has a narrow linewidth and low frequency noise fluctuations.
Abstract:
An exemplary resonator fiber optic gyroscope comprises a resonator having an optical fiber loop; a light source configured to generate a light beam; and an intensity modulation circuit coupled between the light source and the resonator. The intensity modulation circuit is configured to modulate the intensity of the light beam from the light source to output an intensity modulated signal to the resonator. The intensity modulation circuit is configured to produce the intensity modulated signal such that harmonics of the intensity modulated signal which overlap a primary wave of a counter-propagating light beam in the resonator have an amplitude below a predetermined threshold. Amplitudes below the predetermined threshold are negligible.
Abstract:
Systems and methods for performing modulation error correction. An example system applies common phase/frequency modulation to first and second laser beams, a first intensity modulation to the first modulated beam, and a second intensity modulation to the second modulated beam. Signals outputted are demodulated according to the frequency of the common phase/frequency modulation. Then the first of these demodulated signals is demodulated based on the frequency of the intensity modulation of the first beam, and the second of these demodulated signals is demodulated based on the frequency of the intensity modulation of the second beam. Then, rate of rotation is determined based on demodulated signals. Frequencies of the intensity modulations are unequal and not harmonically related, and intensity modulation encodes each light beam with a unique signature.
Abstract:
Systems and methods for compensating for nonlinear phase shift accumulation in an optical ring resonator. An example method includes sending a first beam in a clockwise direction around the optical ring resonator and sending a second beam in a counterclockwise direction around the optical ring resonator. Then, nonlinear phase shift accumulation of the first and second beams is compensated for within the optical ring resonator. Compensating includes creating a negative Kerr effect phase shift for each beam based on an estimate of accumulated positive Kerr effect.
Abstract:
Systems and methods for improved resonator fiber optic gyroscope intensity modulation control are provided. In one embodiment, a resonant fiber optic gyroscope (RFOG) having a residual intensity modulation (RIM) controller comprises: an intensity modulator optically coupled to receive a light beam from a laser source modulated at a resonance detection modulation frequency; an optical tap device optically coupled to the intensity modulator; and a feedback servo coupled to the optical tap device and the intensity modulator, the demodulating feedback servo generating a sinusoidal feedback signal to the intensity modulator. The feedback servo adjusts an amplitude and phase of the sinusoidal feedback signal provided to intensity modulator based on a residual intensity modulation detected by the demodulating feedback servo.