Abstract:
Methods are disclosed of fabricating an optical assembly. An active optical element is disposed near or on a first surface of a slab of optical material. A passive optical element is formed on a second surface of the slab, with the second surface being substantially parallel to the first surface. An optical axis of the passive optical element is aligned with an optical path between the passive optical element and an active region of the active optical element using a lithographic alignment process.
Abstract:
Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
Abstract:
Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
Abstract:
An optical assembly is formed with a silicon substrate having a first surface and a second surface confronting the first surface. A reflective coating is formed over the first surface. Multiple diffraction gratings are formed integrally within the second surface of the silicon substrate. An optical absorber is formed over the second surface between the diffraction gratings.
Abstract:
An optical assembly is formed with a silicon substrate having a first surface and a second surface confronting the first surface. A reflective coating is formed over the first surface. Multiple diffraction gratings are formed integrally within the second surface of the silicon substrate. An optical absorber is formed over the second surface between the diffraction gratings.
Abstract:
A method of fabricating on a substrate an optical detector in an optical waveguide, the method involving: forming at least one layer on a surface of the substrate, said at least one layer comprising SiGe; implanting an impurity into the at least one layer over a first area to form a detector region for the optical detector; etching into the at least one layer in a first region and a second region to form a ridge between the first and second regions, said ridge defining the optical detector and the optical waveguide; filling the first and second regions with a dielectric material having a lower refractive index than SiGe; and after filling the first and second regions with the dielectric material, removing surface material to form a planarized upper surface.
Abstract:
Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
Abstract:
A method of fabricating a detector that involves: forming a trench in a substrate, the substrate having an upper surface; forming a first doped semiconductor layer on the substrate and in the trench; forming a second semiconductor layer on the first doped semiconductor layer and extending into the trench, the second semiconductor layer having a conductivity that is less than the conductivity of the first doped semiconductor layer; forming a third doped semiconductor layer on the second semiconductor layer and extending into the trench; removing portions of the first, second and third layers that are above a plane defined by the surface of the substrate to produce an upper, substantially planar surface and expose an upper end of the first doped semiconductor layer in the trench; forming a first electrical contact to the first semiconductor doped layer; and forming a second electrical contact to the third semiconductor doped layer.
Abstract:
An optoelectronic circuit including: an IC chip made up of a substrate in which an optical waveguide and a mirror have been fabricated, the substrate having a first lens formed thereon, wherein the mirror is aligned with the optical waveguide and the first lens is aligned with the mirror to form an optical path connecting the first lens, the mirror, and the optical waveguide; and an optical coupler including a second lens, the optical coupler affixed to the substrate and positioned to align the second lens with the first lens so as to couple an optical signal into or out of the optical waveguide within the IC chip.
Abstract:
A method of fabricating a detector that involves: forming a trench in a substrate, the substrate having an upper surface; forming a first doped semiconductor layer on the substrate and in the trench; forming a second semiconductor layer on the first doped semiconductor layer and extending into the trench, the second semiconductor layer having a conductivity that is less than the conductivity of the first doped semiconductor layer; forming a third doped semiconductor layer on the second semiconductor layer and extending into the trench; removing portions of the first, second and third layers that are above a plane defined by the surface of the substrate to produce an upper, substantially planar surface and expose an upper end of the first doped semiconductor layer in the trench; forming a first electrical contact to the first semiconductor doped layer; and forming a second electrical contact to the third semiconductor doped layer.