Abstract:
Methods are disclosed of fabricating an optical assembly. An active optical element is disposed near or on a first surface of a slab of optical material. A passive optical element is formed on a second surface of the slab, with the second surface being substantially parallel to the first surface. An optical axis of the passive optical element is aligned with an optical path between the passive optical element and an active region of the active optical element using a lithographic alignment process.
Abstract:
Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
Abstract:
Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
Abstract:
An optical assembly is formed with a silicon substrate having a first surface and a second surface confronting the first surface. A reflective coating is formed over the first surface. Multiple diffraction gratings are formed integrally within the second surface of the silicon substrate. An optical absorber is formed over the second surface between the diffraction gratings.
Abstract:
An optical assembly is formed with a silicon substrate having a first surface and a second surface confronting the first surface. A reflective coating is formed over the first surface. Multiple diffraction gratings are formed integrally within the second surface of the silicon substrate. An optical absorber is formed over the second surface between the diffraction gratings.
Abstract:
A method of fabricating on a substrate an optical detector in an optical waveguide, the method involving: forming at least one layer on a surface of the substrate, said at least one layer comprising SiGe; implanting an impurity into the at least one layer over a first area to form a detector region for the optical detector; etching into the at least one layer in a first region and a second region to form a ridge between the first and second regions, said ridge defining the optical detector and the optical waveguide; filling the first and second regions with a dielectric material having a lower refractive index than SiGe; and after filling the first and second regions with the dielectric material, removing surface material to form a planarized upper surface.
Abstract:
Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
Abstract:
Methods of forming a 3D structure in a substrate are disclosed. A layer of resist is deposited on the substrate. The layer of resist is patterned to define an edge at a predetermined location. The resist is reflowed to form a tapered region extending from the etch. Both the reflowed resist and the substrate are concurrently etched to transfer the tapered profile of the reflowed resist into the underlying substrate to form an angled surface. The etching is discontinued before all of the resist is consumed by the etching.
Abstract:
A method involving: providing an optical waveguide made of a semiconductor material and having a region that is doped by a deep level impurity which creates deep level states in a bandgap in the semiconductor material, the deep level states characterized by an occupancy; passing an optical signal through the optical waveguide and between the region doped by the deep level impurity; and modulating the occupancy of the deep level states to thereby modulate the optical signal.
Abstract:
A method involving: providing an optical waveguide made of a semiconductor material and having a region that is doped by a deep level impurity which creates deep level states in a bandgap in the semiconductor material, the deep level states characterized by an occupancy; passing an optical signal through the optical waveguide and between the region doped by the deep level impurity; and modulating the occupancy of the deep level states to thereby modulate the optical signal.