Abstract:
A method for creating a superhydrophobic coated nanoporous assembly includes the steps of: providing a nanoporous assembly formed of discrete and/or continuous structures that provide a morphology defining pores of less than 1 micron between neighboring discrete and continuous structures; bringing gaseous plasma precursors in the presence of the nanoporous assembly and in the presence of a plasma generator; employing the plasma generator to convert the gaseous plasma precursors to the plasma state; and permitting the plasma precursors to deposit as a coating on the nanoporous assembly through plasma polymerization techniques the deposition thereof preserving the porous structure of the nanoporous assembly, the deposited coating exhibiting a surface energy of less than 30 dynes/cm.
Abstract:
A method for creating a superhydrophobic coated nanoporous assembly includes the steps of: providing a nanoporous assembly formed of discrete and/or continuous structures that provide a morphology defining pores of less than 1 micron between neighboring discrete and continuous structures; bringing gaseous plasma precursors in the presence of the nanoporous assembly and in the presence of a plasma generator; employing the plasma generator to convert the gaseous plasma precursors to the plasma state; and permitting the plasma precursors to deposit as a coating on the nanoporous assembly through plasma polymerization techniques the deposition thereof preserving the porous structure of the nanoporous assembly, the deposited coating exhibiting a surface energy of less than 30 dynes/cm.
Abstract:
A method of fabricating a cathodic portion of a field emission display includes the steps of producing an array of substantially parallel carbon nanotubes attached at one end to a substantially planar substrate. Then, embedding the nanotubes in a polymer matrix that extends to a plane of attachment of the nanotubes to the planar substrate, wherein the polymer matrix allows an end of the nanotubes distal from the ends attached to the planar substrate, uncovered by the polymer matrix in order to allow electrical contact with each other and with an attached conductor. Next, detaching the array from the planar substrate, thus producing a surface having the formerly attached ends of the nanotubes substantially in a plane, and then attaching the conductor to the array of nanotube ends, uncovered by the polymer matrix and distal to the plane.
Abstract:
This is provided a hydrophobic or superhydrophobic surface configuration and method of forming a hydrophobic or superhydrophobic material on a metallic substrate. The surface configuration comprises a metallic substrate having a carbon nanotube/carbon fibers configuration grown thereon, with the carbon nanotubes/carbon fibers configuration having a heirarchial structure formed to have a predetermined roughness in association with the surface. The method comprises providing a metallic substrate having a predetermined configuration, and growing a plurality of carbon nanotubes/fibers or other nanostructures formed into a predetermined architecture supported on the substrate.
Abstract:
A method of fabricating a cathodic portion of a field emission display includes the steps of producing an array of substantially parallel carbon nanotubes attached at one end to a substantially planar substrate. Then, embedding the nanotubes in a polymer matrix that extends to a plane of attachment of the nanotubes to the planar substrate, wherein the polymer matrix allows an end of the nanotubes distal from the ends attached to the planar substrate, uncovered by the polymer matrix in order to allow electrical contact with each other and with an attached conductor. Next, detaching the array from the planar substrate, thus producing a surface having the formerly attached ends of the nanotubes substantially in a plane, and then attaching the conductor to the array of nanotube ends, uncovered by the polymer matrix and distal to the plane.
Abstract:
A method of implementing a carbon nanotube thermal interface material onto a heat sink that includes growing carbon nanotubes on said heat sink by chemical vapor deposition and compressing the carbon nanotubes onto metallic surfaces to increase a contact surface area between the carbon nanotubes and the metallic surfaces. The increase in the contact surface area is the area of the carbon nanotubes that is in contact with the metallic surfaces.
Abstract:
This is provided a hydrophobic or superhydrophobic surface configuration and method of forming a hydrophobic or superhydrophobic material on a metallic substrate. The surface configuration comprises a metallic substrate having a carbon nanotube/carbon fibers configuration grown thereon, with the carbon nanotubes/carbon fibers configuration having a heirarchial structure formed to have a predetermined roughness in association with the surface. The method comprises providing a metallic substrate having a predetermined configuration, and growing a plurality of carbon nanotubes/fibers or other nanostructures formed into a predetermined architecture supported on the substrate.
Abstract:
A method of implementing a carbon nanotube thermal interface material onto a heat sink that includes growing carbon nanotubes on said heat sink by chemical vapor deposition and compressing the carbon nanotubes onto metallic surfaces to increase a contact surface area between the carbon nanotubes and the metallic surfaces. The increase in the contact surface area is the area of the carbon nanotubes that is in contact with the metallic surfaces.
Abstract:
Aligned carbon nanotube-polymer composite materials, systems and methods include a substrate that carries an adhesive coating thereon. A plurality of carbon nanostructures are adhered to the substrate by the adhesive coating, such that the nanostructures are formed into a predetermined architecture, such that the architecture of the nanostructures defines at least one orientation for a plurality of nanostructures, and defies the approximate spacing between the nanostructures and/or groups of nanostructures. The adherence of the carbon nanostructures in the adhesive coating stabilizes the predetermined architecture of the nanostructures, such that the architecture renders the composite material superhydrophobic.
Abstract:
The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, self-cleaning applications, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within an adhesive, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a self-cleaning carbon nanotube composite material that includes a substrate, an adhesive coating on at least a portion of the substrate, a plurality of carbon nanostructures formed into a predetermined architecture, each of the plurality of nanostructures having a substantially predetermined width and length, and the architecture of the plurality of nanostructures defining at least one orientation for a plurality of nanostructures, and defining the approximate spacing between nanostructures and/or groups of nanostructures, the carbon nanostructures architecture being at least partially adhered to the adhesive coating on the substrate in a manner that the architecture is stabilized in the predetermined architecture, wherein the carbon nanostructures architecture renders the composite material superhydrophobic.