Abstract:
There are disclosed a multilayer silver halide color photographic material comprising two kinds of cyan couplers and a multilayer silver halide color photographic material comprising two kinds of cyan couplers, a magenta coupler, and a yellow coupler in respective photosensitive layer. The disclosure as described provides a multilayer silver halide color photographic material that is good in color-forming property, that will be less stained, and that is improved in image-lasting quality and in fastness under severe conditions.
Abstract:
In an axial fan, a housing includes a side wall arranged to surround an outer circumference of an impeller, and a substantially square or substantially rectangular flange arranged to project radially outward from an outer circumferential surface of the side wall. The side wall preferably includes three slit groups each including a plurality of slits arranged in a circumferential direction and arranged to extend through the side wall from an inner circumferential surface to the outer circumferential surface thereof. Two of the slit groups are defined in portions of the side wall which correspond to two adjacent corner portions in an upper half portion of the flange, while the remaining slit group is defined in a portion of the side wall which corresponds to a lower half portion of the flange. The upper and lower half portions are divided at a line parallel or substantially parallel to two opposing sides of the flange and passing through a central axis.
Abstract:
A current control device capable of performing widely applicable failure detection without a motor rotation speed sensor is provided. A current control semiconductor element includes, on a same semiconductor chip, a transistor that drives load, a current detection circuit that detects current of the load, a compensator that calculates an on-duty of the transistor from a current command value and a current value output from the current detection circuit, and a PWM timer that generates a pulse turning on the transistor on the basis of the on-duty. A microcontroller sends the current command value to the current control semiconductor element, receives the current value output from the current detection circuit and the on-duty output from the compensator from the current control semiconductor element, and detects failure of the current control semiconductor element on the basis of the received current value and on-duty.
Abstract:
A current control device capable of performing widely applicable failure detection without a motor rotation speed sensor is provided. A current control semiconductor element includes, on a same semiconductor chip, a transistor that drives load, a current detection circuit that detects current of the load, a compensator that calculates an on-duty of the transistor from a current command value and a current value output from the current detection circuit, and a PWM timer that generates a pulse turning on the transistor on the basis of the on-duty. A microcontroller sends the current command value to the current control semiconductor element, receives the current value output from the current detection circuit and the on-duty output from the compensator from the current control semiconductor element, and detects failure of the current control semiconductor element on the basis of the received current value and on-duty.
Abstract:
A current control semiconductor device that can detect a current with high precision within an IC of one chip by dynamically correcting a variation in a gain a and an offset b, and a control device using the semiconductor device are provided. A transistor 4, a current-voltage converter circuit 22, and an AD converter 23 are disposed on an identical semiconductor chip. Reference current generator circuits 6 and 6′ superimpose a current pulse Ic on a current of a load 2, and vary a voltage digital value output by the AD converter. A gain/offset correction unit 8 subjects a variation in a voltage digital value caused by the reference current generator circuits 6, 6′ to signal processing, and dynamically acquires gains a, a′ and offsets b, b′ in a linear relational expression of the voltage digital value output by the AD converter 23 and a current digital value of the load. A current digital value calculation unit 12 corrects a voltage value output by the AD converter with the use of the gain and the offset acquired by the gain/offset correction unit 8.
Abstract:
A current regulator has a current regulating semiconductor device and a microcontroller which outputs a PWM pulse for driving a load to the current regulating semiconductor device and receives outputs of a high-side current detection circuit and a low-side current detection circuit from the current regulating semiconductor device. An output mixer of the current regulating semiconductor device switches, in synchronization with the PWM pulse, between the output of the high-side current detection circuit and the output of the low-side current detection circuit on one signal line to output the output to the microcontroller.
Abstract:
A current control semiconductor device that can detect a current with high precision within an IC of one chip by dynamically correcting a variation in a gain a and an offset b, and a control device using the semiconductor device are provided. A transistor 4, a current-voltage converter circuit 22, and an AD converter 23 are disposed on an identical semiconductor chip. Reference current generator circuits 6 and 6′ superimpose a current pulse Ic on a current of a load 2, and vary a voltage digital value output by the AD converter. A gain/offset correction unit 8 subjects a variation in a voltage digital value caused by the reference current generator circuits 6, 6′ to signal processing, and dynamically acquires gains a, a′ and offsets b, b′ in a linear relational expression of the voltage digital value output by the AD converter 23 and a current digital value of the load. A current digital value calculation unit 12 corrects a voltage value output by the AD converter with the use of the gain and the offset acquired by the gain/offset correction unit 8.