Abstract:
A method includes controlling active frequency states of a plurality of heterogeneous processing units based on frequency sensitivity metrics indicating performance coupling between different types of processing units in the plurality of heterogeneous processing units. A processor includes a plurality of heterogeneous processing units and a performance controller to control active frequency states of the plurality of heterogeneous processing units based on frequency sensitivity metrics indicating performance coupling between different types of processing units in the plurality of heterogeneous processing units. The active frequency state of a first type of processing unit in the plurality of heterogeneous processing units is controlled based on a first activity metric associated with a first type of processing unit and a second activity metric associated with a second type of processing unit.
Abstract:
An apparatus and methods for controlling energy consumption of an electronic device determine an availability of an energy source to provide energy to the electronic device. The apparatus and methods control, by power management control logic of the electronic device, energy consumption of the electronic device in response to determining the availability of the energy source.
Abstract:
An apparatus and methods for controlling energy consumption of an electronic device determine an availability of an energy source to provide energy to the electronic device. The apparatus and methods control, by power management control logic of the electronic device, energy consumption of the electronic device in response to determining the availability of the energy source.
Abstract:
A method includes controlling active frequency states of a plurality of heterogeneous processing units based on frequency sensitivity metrics indicating performance coupling between different types of processing units in the plurality of heterogeneous processing units. A processor includes a plurality of heterogeneous processing units and a performance controller to control active frequency states of the plurality of heterogeneous processing units based on frequency sensitivity metrics indicating performance coupling between different types of processing units in the plurality of heterogeneous processing units. The active frequency state of a first type of processing unit in the plurality of heterogeneous processing units is controlled based on a first activity metric associated with a first type of processing unit and a second activity metric associated with a second type of processing unit.
Abstract:
A data processing system includes a plurality of processor resources, a manager, and a power distributor. Each of the plurality of data processor cores is operable at a selected one of a plurality of performance states. The manager assigns each of a plurality of program elements to one of the plurality of processor resources, and synchronizing the program elements using barriers. The power distributor is coupled to the manager and to the plurality of processor resources, and assigns a performance state to each of the plurality of processor resources within an overall power budget, and in response to detecting that a program element assigned to a first processor resource is at a barrier, increases the performance state of a second processor resource that is not at the barrier within the overall power budget.