Abstract:
A system and method disclosed for using and updating a database of template responses for a live agent in response to user communications. The method includes computing an average string distance between each response from a live agent and a template, use to generate the response, modifying the computed average string distance based on a customer satisfaction score associated with each response and selecting a response that minimizes the computed average string distance and maximizes customer satisfaction. Upon receiving a further communication on a certain issue, the system presents a prototype response that has been added to the template database to the live agent for use in generating a response to the further communication that reduces handling time and increases customer satisfaction.
Abstract:
An automated and model driven mini-cloud deployment method comprising: instantiating a model driven orchestrator; parsing a blueprint to develop a virtual network function topology including: identifying infrastructure components required to establish at least one virtual network function; identifying at least one dependency for the at least one virtual network function; providing a sequence for calling life cycle operations; the model driven orchestrator effectuates the life cycle operations comprising: establishing a uCPE as a tenant within a network registry, configuring the uCPE, and activating the uCPE; and instantiating the at least one virtual network function on the uCPE according to the virtual network function topology.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for assigning saliency weights to words of an ASR model. The saliency values assigned to words within an ASR model are based on human perception judgments of previous transcripts. These saliency values are applied as weights to modify an ASR model such that the results of the weighted ASR model in converting a spoken document to a transcript provide a more accurate and useful transcription to the user.
Abstract:
The present disclosure relates to systems, methods, and computer-readable media for generating a lexicon for use with speech recognition. The method includes overgenerating potential pronunciations based on symbolic input, identifying potential pronunciations in a speech recognition context, and storing the identified potential pronunciations in a lexicon. Overgenerating potential pronunciations can include establishing a set of conversion rules for short sequences of letters, converting portions of the symbolic input into a number of possible lexical pronunciation variants based on the set of conversion rules, modeling the possible lexical pronunciation variants in one of a weighted network and a list of phoneme lists, and iteratively retraining the set of conversion rules based on improved pronunciations. Symbolic input can include multiple examples of a same spoken word. Speech data can be labeled explicitly or implicitly and can include words as text and recorded audio.
Abstract:
A method includes receiving a communication from a party at a voice response system and capturing speech spoken by the party during the communication. Then a processor creates a voice model of the party, the voice model being created by processing the speech, without notifying the party. The voice model is then stored to provide voice verification during a subsequent communication.
Abstract:
Disclosed herein are systems, methods and non-transitory computer-readable media for performing speech recognition across different applications or environments without model customization or prior knowledge of the domain of the received speech. The disclosure includes recognizing received speech with a collection of domain-specific speech recognizers, determining a speech recognition confidence for each of the speech recognition outputs, selecting speech recognition candidates based on a respective speech recognition confidence for each speech recognition output, and combining selected speech recognition candidates to generate text based on the combination.
Abstract:
A method includes receiving a communication from a party at a voice response system and capturing verbal communication spoken by the party. Then a processor creates a voice model associated with the party, the voice model being created by processing the captured verbal communication spoken by the party. The creation of the voice model is imperceptible to the party. The voice model is then stored to provide voice verification of the party during a subsequent communication.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for performing trend analysis of speech. A system practicing the method receives a speech trend analysis request having candidate feature constraints, an objective function with respect to a speech trend to be analyzed, and a set of speech record constraints. The system selects a subset of speech records from the group of speech records based on the set of speech record constraints to yield selected speech records, identifies features in the selected speech records based on the set of candidate feature constraints to yield identified features, and assigns a weight to each of the identified features based on the objective function. Then the system ranks the identified features by their respective weights to yield ranked identified features, and outputs at least one of the ranked identified features associated with a speech-based trend in response to the speech trend analysis request.