Abstract:
The present invention relates to a single-crystal silicon-carbide substrate provided with a principal surface having an atomic step-and-terrace structure containing atomic steps and terraces derived from a crystal structure, in which the atomic step-and-terrace structure has a proportion of an average line roughness of a front edge portion of the atomic step to a height of the atomic step being 20% or less.
Abstract:
The present invention relates to a single-crystal silicon-carbide substrate provided with a principal surface having an atomic step-and-terrace structure containing atomic steps and terraces derived from a crystal structure, in which the atomic step-and-terrace structure has a proportion of an average line roughness of a front edge portion of the atomic step to a height of the atomic step being 20% or less.
Abstract:
The present invention relates to a single-crystal silicon-carbide substrate provided with a principal surface having an atomic step-and-terrace structure containing atomic steps and terraces derived from a crystal structure, in which the atomic step-and-terrace structure has a proportion of an average line roughness of a front edge portion of the atomic step to a height of the atomic step being 20% or less.
Abstract:
There are provided a coating solution for forming an ultraviolet-absorbing film that has mechanical durability such as abrasion resistance, sufficiently secures colorlessness and transparency, and has less deterioration of ultraviolet-absorbing ability caused by long-time light exposure, and an ultraviolet-absorbing glass article having an ultraviolet-absorbing film that is formed by using the coating solution, has mechanical durability such as abrasion resistance, sufficiently secures colorlessness and transparency, and has less deterioration of ultraviolet-absorbing ability caused by long-time light exposure. A coating solution for forming an ultraviolet-absorbing film including: a silicon oxide-based matrix material component consisting of at least one selected from hydrolyzable silicon compounds; an ultraviolet absorber; an acid having a primary proton pKa from of 1.0 to 5.0; and a water and an ultraviolet-absorbing glass article obtained by using it.
Abstract:
A process of manufacturing a single-crystal silicon-carbide substrate, includes contacting a surface of a single-crystal silicon-carbide plate with a surface of a polishing pad; and moving the surface of the single-crystal silicon-carbide plate relative to the surface of the polishing pad while supplying a polishing solution to the surface the polishing pad, to polish the surface of the single-crystal silicon-carbide plate. The polishing pad comprises a non-woven fabric or a porous resin. The polishing solution comprises an oxidizing agent which comprises a transition metal having oxidation-reduction potential of 0.5 V or more. Neither the polishing pad nor the polishing solution comprises an abrasive.
Abstract:
There is provided a polishing method for polishing a non-oxide single-crystal substrate such as a silicon carbide single-crystal substrate at a high polishing rate to obtain a high-quality surface that is smooth and excellent in surface properties. This polishing method is a method of supplying a polishing liquid to a polishing pad not including abrasive grains to bring a surface to be polished of the non-oxide single-crystal substrate and the polishing pad into contact with each other and polishing the surface to be polished by a relative movement between them, the method characterized in that the polishing liquid comprises: an oxidant whose redox potential is 0.5 V or more and which contains a transition metal; and water, and does not contain abrasive grains.
Abstract:
To provide a liquid composition capable of forming a coating film which has sufficient ultraviolet-absorbing ability and infrared-absorbing ability.A liquid composition for forming a coating film comprising an infrared absorber selected from indium tin oxide, antinomy tin oxide and a composite tungsten oxide, an ultraviolet absorber selected from a benzophenone compound, a triazine compound and a benzotriazole compound, a dispersing agent having an acid value and/or an amine value, a binder component and a liquid medium, wherein the dispersing agent is contained in a content such that the product of the sum (mgKOH/g) of the acid value and the amine value of the dispersing agent, and the mass ratio of the dispersing agent to the infrared absorber, is from 2 to 30 (mgKOH/g).
Abstract:
There is provided a polishing method for polishing a non-oxide single-crystal substrate such as a silicon carbide single-crystal substrate at a high polishing rate to obtain a high-quality surface that is smooth and excellent in surface properties. This polishing method is a method of supplying a polishing liquid to a polishing pad not including abrasive grains to bring a surface to be polished of the non-oxide single-crystal substrate and the polishing pad into contact with each other and polishing the surface to be polished by a relative movement between them, the method characterized in that the polishing liquid comprises: an oxidant whose redox potential is 0.5 V or more and which contains a transition metal; and water, and does not contain abrasive grains.
Abstract:
A polishing agent for polishing a non-oxide single-crystal substrate such as a silicon carbide single-crystal substrate with a high polishing rate to obtain a smooth surface is provided. This polishing agent comprises an oxidant having redox potential of 0.5 V or more and containing a transition metal, silicon oxide particles, cerium oxide particles and a dispersion medium, in which a mass ratio of the silicon oxide particles to the cerium oxide particles is from 0.2 to 20.