Abstract:
Embodiments of improved substrate carriers are provided herein. In some embodiments, a substrate carrier, includes: a multi-layered disk having upper and lower layers formed of a continuous material and an electrostatic electrode structure disposed therebetween, wherein the multi-layered disk is dimensioned and arranged so as to have a nominal dimension which exceeds a nominal dimension of a standard substrate size used in the manufacture of light emitting diode devices, and wherein the multi-layered disk is formed symmetrically about a central axis and defines a substantially planar upper surface.
Abstract:
Embodiments of methods and apparatus for removing particles from a surface of a substrate, such as from the backside of the substrate, are provided herein. In some embodiments, an apparatus for removing particles from a surface of a substrate includes: a substrate handler to expose the surface of the substrate; a particle separator to separate particles from the exposed surface of the substrate; a particle transporter to transport the separated particles; and a particle collector to collect the transported particles.
Abstract:
Embodiments of methods and apparatus for removing particles from a surface of a substrate, such as from the backside of the substrate, are provided herein. In some embodiments, an apparatus for removing particles from a surface of a substrate includes: a substrate handler to expose the surface of the substrate; a particle separator to separate particles from the exposed surface of the substrate; a particle transporter to transport the separated particles; and a particle collector to collect the transported particles.
Abstract:
Embodiments of substrate carriers which enable active/passive bonding and de-bonding of a substrate are provided herein. In some embodiments, a substrate carrier for holding a substrate comprises a disk formed of a porous material, the disk being formed symmetrically about a central axis and defining a substantially planar upper surface. In some embodiments, the porous material is silicon carbide and the substrate carrier includes a semi-porous surface coating formed atop the upper surface of the disk.
Abstract:
Embodiments of improved substrate carriers are provided herein. In some embodiments, a substrate carrier, includes: a multi-layered disk having upper and lower layers formed of a continuous material and an electrostatic electrode structure disposed therebetween, wherein the multi-layered disk is dimensioned and arranged so as to have a nominal dimension which exceeds a nominal dimension of a standard substrate size used in the manufacture of light emitting diode devices, and wherein the multi-layered disk is formed symmetrically about a central axis and defines a substantially planar upper surface.
Abstract:
An apparatus for removing particles from a substrate contact surface includes parallel electrodes disposed beneath the substrate contact surface; and an alternating current (AC) power supply having a first AC terminal connected to a first parallel electrode and a second AC terminal connected to a second parallel electrode adjacent to the first parallel electrode, wherein an AC output of the first AC terminal has a different phase than an AC output of the second AC terminal. A method of removing particles from a substrate contact surface includes supplying a first alternating current (AC) to a first one of parallel electrodes disposed beneath the substrate contact surface; and supplying a second alternating current to a second one of the parallel electrodes disposed adjacent to the first parallel electrode; wherein the first alternating current has a different phase than the second alternating current.