Abstract:
Broadly, the present disclosure relates to sidewall features (e.g. inner sidewall or hot face) of an electrolysis cell, which protect the sidewall from the electrolytic bath while the cell is in operation (e.g. producing metal in the electrolytic cell).
Abstract:
Broadly, the present disclosure relates to sidewall features (e.g. inner sidewall or hot face) of an electrolysis cell, which protect the sidewall from the electrolytic bath while the cell is in operation (e.g. producing metal in the electrolytic cell).
Abstract:
A system is provided including an electrolysis cell configured to retain a molten electrolyte bath, the bath including at least one bath component, the electrolysis cell including: a bottom, and a sidewall consisting essentially of the at least one bath component; and a feeder system, configured to provide a feed material including the least one bath component to the molten electrolyte bath such that the at least one bath component is within 2% of saturation, wherein, via the feed material, the sidewall is stable in the molten electrolyte bath.
Abstract:
Broadly, the present disclosure relates to sidewall features (e.g. inner sidewall or hot face) of an electrolysis cell, which protect the sidewall from the electrolytic bath while the cell is in operation (e.g. producing metal in the electrolytic cell).
Abstract:
Broadly, the present disclosure relates to sidewall features (e.g. inner sidewall or hot face) of an electrolysis cell, which protect the sidewall from the electrolytic bath while the cell is in operation (e.g. producing metal in the electrolytic cell).
Abstract:
A system is provided including an electrolysis cell configured to retain a molten electrolyte bath, the bath including at least one bath component, the electrolysis cell including: a bottom, and a sidewall consisting essentially of the at least one bath component; and a feed material including the least one bath component to the molten electrolyte bath such that the at least one bath component is within 30% of saturation, wherein, via the feed material, the sidewall is stable in the molten electrolyte bath.
Abstract:
Broadly, the present disclosure relates to sidewall features (e.g. inner sidewall or hot face) of an electrolysis cell, which protect the sidewall from the electrolytic bath while the cell is in operation (e.g. producing metal in the electrolytic cell).
Abstract:
A system is provided including an electrolysis cell configured to retain a molten electrolyte bath, the bath including at least one bath component, the electrolysis cell including: a bottom, and a sidewall consisting essentially of the at least one bath component; and a feeder system, configured to provide a feed material including the least one bath component to the molten electrolyte bath such that the at least one bath component is within 2% of saturation, wherein, via the feed material, the sidewall is stable in the molten electrolyte bath.
Abstract:
A system is provided including an electrolysis cell configured to retain a molten electrolyte bath, the bath including at least one bath component, the electrolysis cell including: a bottom, and a sidewall consisting essentially of the at least one bath component; and a feed material including the least one bath component to the molten electrolyte bath such that the at least one bath component is within 30% of saturation, wherein, via the feed material, the sidewall is stable in the molten electrolyte bath.
Abstract:
A method to recycle TiB2 articles, and in particular, a method to recycle a TiB2 feedstock including TiB2 articles and Ti-ore and/or Ti-slag by chlorination.