Abstract:
A method for determining optical properties of a corneal region. The method includes the steps of obtaining a combined tear film aqueous layer plus lipid layer thickness; obtaining a tear film lipid layer thickness; subtracting the tear film lipid layer thickness from the combined tear film aqueous layer plus lipid layer thickness to obtain a tear film aqueous layer thickness; and determining a corneal layer refractive index based on the tear film lipid layer thickness and the tear film aqueous layer thickness.
Abstract:
A method for determining reflectivity of a tear film lipid layer of a patient and recommending a course of treatment based on the same. The method includes the steps of: measuring a tear film aqueous plus lipid layer relative reflectance spectrum using a wavelength-dependent optical interferometer; converting the measured tear film aqueous plus lipid layer relative reflectance spectrum to a calculated absolute reflectance spectrum; comparing the calculated absolute reflectance spectrum to a theoretical absolute lipid reflectance spectrum to determine a tear film lipid layer thickness; and determining a reflectivity value for the tear film lipid layer thickness at a first wavelength of light corresponding to ultraviolet, violet, or blue light.
Abstract:
A method for determining reflectivity of a tear film lipid layer of a patient and recommending a course of treatment based on the same. The method includes the steps of: measuring a tear film aqueous plus lipid layer relative reflectance spectrum using a wavelength-dependent optical interferometer; converting the measured tear film aqueous plus lipid layer relative reflectance spectrum to a calculated absolute reflectance spectrum; comparing the calculated absolute reflectance spectrum to a theoretical absolute lipid reflectance spectrum to determine a tear film lipid layer thickness; and determining a reflectivity value for the tear film lipid layer thickness at a first wavelength of light corresponding to ultraviolet, violet, or blue light.
Abstract:
Compositions and methods for disinfecting contact lenses using the compositions are disclosed. The compositions include a combination of alexidine and chlorhexidine, which surprisingly causes the composition to exhibit synergistic antimicrobial activity against Candida albicans by reducing a concentration of Candida albicans by at least 1.2 log.
Abstract:
Methods and devices measure eye blinks and tear film lipid and aqueous layer thickness before and following ophthalmic formula application onto the ocular surface, especially wherein the ophthalmic formula is an artificial tear. The methods and devices are suitable for dry eye diagnosis. The methods and devices are suitable for use to evaluate ophthalmic formula effects on the tear film and to use such information to diagnose ophthalmic formula treatment of ocular disease conditions such as dry eye in the absence of contact lens wear or post-surgical eye drop treatment and diagnosis. The methods and devices are also suitable for use in the optimization of ophthalmic drug dosage forms and sustained drug release.
Abstract:
A method for determining reflectivity of a tear film lipid layer of a patient and recommending a course of treatment based on the same. The method includes the steps of: measuring a tear film aqueous plus lipid layer relative reflectance spectrum using a wavelength-dependent optical interferometer; converting the measured tear film aqueous plus lipid layer relative reflectance spectrum to a calculated absolute reflectance spectrum; comparing the calculated absolute reflectance spectrum to a theoretical absolute lipid reflectance spectrum to determine a tear film lipid layer thickness; and determining a reflectivity value for the tear film lipid layer thickness at a first wavelength of light corresponding to ultraviolet, violet, or blue light.
Abstract:
A method for determining optical properties of a corneal region. The method includes the steps of obtaining a combined tear film aqueous layer plus lipid layer thickness; obtaining a tear film lipid layer thickness; subtracting the tear film lipid layer thickness from the combined tear film aqueous layer plus lipid layer thickness to obtain a tear film aqueous layer thickness; and determining a corneal layer refractive index based on the tear film lipid layer thickness and the tear film aqueous layer thickness.
Abstract:
A method for determining reflectivity of a tear film lipid layer of a patient and recommending a course of treatment based on the same. The method includes the steps of: measuring a tear film aqueous plus lipid layer relative reflectance spectrum using a wavelength-dependent optical interferometer; converting the measured tear film aqueous plus lipid layer relative reflectance spectrum to a calculated absolute reflectance spectrum; comparing the calculated absolute reflectance spectrum to a theoretical absolute lipid reflectance spectrum to determine a tear film lipid layer thickness; and determining a reflectivity value for the tear film lipid layer thickness at a first wavelength of light corresponding to ultraviolet, violet, or blue light.
Abstract:
Compositions and methods for disinfecting contact lenses using the compositions are disclosed. The compositions include a combination of alexidine and chlorhexidine, which surprisingly causes the composition to exhibit synergistic antimicrobial activity against Candida albicans by reducing a concentration of Candida albicans by at least 1.2 log.
Abstract:
Disclosed herein are ophthalmic cleaning systems and methods for their use, which comprise an ophthalmic solution and lens case, wherein the solution includes dual disinfectants and the lens case includes silver. When the lens case is combined with the solution according to the system of the present invention, it surprisingly exhibits synergistic activity which results in a faster antimicrobial activity.