Abstract:
A fiber-optic current sensor uses a highly-birefringent spun fiber as sensing fiber. The light is fed through a retarder, which is a detuned quarter-wave or half-wave retarder. It is shown that such detuning can be used to compensate for temperature dependencies of the sensing head.
Abstract:
A fiber-optic current sensor uses a highly-birefringent spun fiber as sensing fiber. The light is fed through a retarder, which is a detuned quarter-wave or half-wave retarder. It is shown that such detuning can be used to compensate for temperature dependencies of the sensing head.
Abstract:
A voltage sensor includes an insulator with mutually insulated electrodes embedded therein. The electrodes are coaxial and cylindrical and overlap axially along part of their lengths. They are mutually staggered and control the surfaces of electric equipotential such that there is a substantially homogeneous electric field outside the insulator and a substantially homogeneous but higher field within a sensing cavity within the insulator. A field sensor is arranged within the sensing cavity to locally measure the field. This design allows for the production of compact voltage sensors for high voltage applications.
Abstract:
A voltage sensor includes an insulator with mutually insulated electrodes embedded therein. The electrodes are coaxial and cylindrical and overlap axially along part of their lengths. They are mutually staggered and control the surfaces of electric equipotential such that there is a substantially homogeneous electric field outside the insulator and a substantially homogeneous but higher field within a sensing cavity within the insulator. A field sensor is arranged within the sensing cavity to measure the field. This design allows for the production of compact voltage sensors for high voltage applications.
Abstract:
A voltage sensor includes an insulator with mutually insulated electrodes embedded therein. The electrodes are coaxial and cylindrical and overlap axially along part of their lengths. They are mutually staggered and control the surfaces of electric equipotential such that there is a substantially homogeneous electric field outside the insulator and a substantially homogeneous but higher field within a sensing cavity within the insulator. A field sensor is arranged within the sensing cavity to locally measure the field. This design allows for the production of compact voltage sensors for high voltage applications.
Abstract:
In a fiber-optic current sensor, a 22.5° Faraday rotator, which is part of the sensing fiber coil, determines the working point of the sensor. The coil is operated with substantially linearly polarized light or incoherent substantially left and right circularly polarized light waves. In one arrangement, a polarization beam splitter generates two optical signals that vary in anti-phase with changing current. A signal processor determines the current from the two anti-phase signals. Appropriately detuned and oriented fiber-optic half-wave or quarter-wave retarders before the fiber coil are used to reduce or cancel the adverse effects of temperature and bend-induced birefringence on the measurement signal. Moreover, the temperature may be derived from the difference in the bias of the anti-phase signals and may be used to cancel temperature effects in the signal processor.