Abstract:
An arrangement is disclosed for supplying propulsion power to a contra rotating propellers (CRP) propulsion system in a marine vessel, which arrangement can include a first propeller driven by a rotating power unit, and a second propeller driven by an AC motor. The second propeller can be rotated in an opposite direction relative to the first propeller, wherein an AC generator is driven by the rotating power unit and the AC generator is electrically connected to the AC motor. The rotation speed of the second propeller is between for example 95% and 150% of the rotation speed of the first propeller. The AC motor and the AC generator have the same electrical frequency. The pole number of the AC generator is from for example 2 to 40 and the pole number of the AC motor is from for example 2 to 40.
Abstract:
A drive arrangement for a cycloidal marine propulsion unit including at least two electrical blade motors each associated to a respective blade for pivoting thereof, each blade motor being operationally coupled to a respective blade drive for actuating the corresponding blade motor. The at least two blade drives each include a respective blade drive power converter operationally coupled to a first common intermediate DC-link, wherein the at least two blade drives being configured to feed power from the first common intermediate DC-link to their respective blade motors, and to feed regenerative power from their respective blade motors to the first common intermediate DC-link. The disclosure also concerns a marine propulsion unit having such a drive arrangement, and a method of operating such a drive arrangement.
Abstract:
An exemplary propulsion arrangement is disclosed which includes two propulsion units situated side by side at the stern of a ship at opposite sides of a center line of the hull of the ship. Each propulsion unit can include a hollow support structure attached to the hull, a chamber attached to the support structure, an electric motor within the chamber, a propeller connected through a shaft to the electric motor, and a pivotably supported rudder at the rear end of the chamber. Each propulsion unit can be mounted in a toe-out position forming a horizontal tilt angle (β) of 0.5 to 6 degrees to the center line (CL) of the hull.
Abstract:
An exemplary propulsion arrangement includes at least one propulsion unit situated at the stern of a ship having a hull with a horizontal water line (WL) and a center line (CL). The propulsion unit can include a hollow support structure attached to the hull, a chamber attached to the support structure, an electric motor within the chamber, a propeller at the front end of the chamber, and a pivotably supported rudder at the rear end of the chamber. The propulsion unit can be mounted so that the shaft line (SL) forms a vertical tilt angle (α) in a range of 1 to 8 degrees in relation to the water line (WL) so that the front end of the chamber is lower than the rear end of the chamber in relation to the water line (WL).
Abstract:
An arrangement for steering and supplying propulsion power to a contra rotating propeller(s) (CRP) propulsion system in a marine vessel is disclosed. The arrangement can include a first propeller, a second propeller driven by an AC motor, and an AC generator. The AC motor and AC generator can have the same electrical frequency. Another electrical power source can be electrically connectable to the AC motor in parallel to the AC generator. A shaft of the second propeller is mounted rotatable in a support structure which is attached to a hull of the marine vessel, and a rudder is supported in a manner allowing pivotal movement of the rudder relative to the support structure.