Abstract:
A retroreflective article comprises a binder layer and a plurality of retroreflective elements, each retroreflective element comprising a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements comprise a first locally laminated layer and a second locally laminated layer that may be reflective layers. A transfer article comprises a disposable carrier layer in which the retroreflective article is detachably disposed with at least some of the transparent microspheres in contact with the disposable carrier layer.
Abstract:
A retroreflective article including a binder layer and a plurality of retroreflective elements. Each retroreflective element includes a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements include a reflective layer that is embedded between the transparent microsphere and the binder layer. At least some of the embedded reflective layers are localized reflective layers.
Abstract:
Optical articles including a spatially defined arrangement of a plurality of data rich retroreflective elements, wherein the plurality of retroreflective elements comprise retroreflective elements having at least two different retroreflective properties and at least two different optical contrasts with respect to a background substrate when observed within an ultraviolet spectrum, a visible spectrum, a near-infrared spectrum, or a combination thereof.
Abstract:
Retroreflecting articles are described. In particular, retroreflecting articles including a quarter wave retarder and a retroreflecting layer are described. The retarder is rotationally invariant and the retroreflecting layer is non-depolarizing. Such articles may be useful for sensor-detectable signs, labels, and garments.
Abstract:
Processing tapes have special properties to permit them to be used to prepare laminate articles, such as security articles. The processing tapes include a backing, a pressure sensitive adhesive layer and a release surface covering the pressure sensitive adhesive layer. The backing is a dimensionally stable transparent polymeric film, and the surface on which the pressure sensitive is coated may be a treated surface. The pressure sensitive adhesive is a transparent pressure sensitive adhesive that includes a crosslinked (meth)acrylate-based polymer and has a refractive index in the range of 1.45-1.55. The (meth)acrylate-based polymer includes alkyl (meth)acrylate monomers and may include acidic monomers.
Abstract:
A moisture-curable composition includes a polymer preparable by free-radical copolymerization of monomers comprising at least one monomer A and at least one monomer B. Monomer(s) A comprise free-radically polymerizable hydrolyzable silane. Monomer(s) B include a divalent group selected from the group consisting of —(CF2O)a—, —(CF2CF2O)b—, —(CF2CF2CF2O)c—, —(CF2CF2CF2CF2O)d—, —(CF2CF(CF3)O)e—, and combinations thereof, wherein a, b, c, d, and e represent integers in the range of from 0 to 130, and wherein 1≦
Abstract:
Retroreflecting optical constructions are disclosed. A disclosed retroreflecting optical construction includes a retroreflecting layer that has a retroreflecting structured major surface, and an optical film that is disposed on the retroreflecting structured major surface of the retroreflecting layer. The optical film has an optical haze that is not less than about 30%. Substantial portions of each two neighboring major surfaces in the retroreflecting optical construction are in physical contact with each other.
Abstract:
A peelable, flexible coating for a surface is provided, comprising a polymer blend that comprises polyurethane as a major component, and at least a polymer P2 having in comparison to polyurethane a higher peel strength to the surface to be coated and a higher percent elongation at break when cured for imparting a flexible and a peelable quality to the coating.
Abstract:
A radar-optical fusion article for attachment to a substrate is described. The radar-optical fusion article includes a first retroreflective layer which is configured to retroreflect at least a portion of light having a wavelength in a range from about 400 nm to about 2500 nm. The radar-optical fusion article includes a second retroreflective layer disposed adjacent to the first retroreflective layer. The second retroreflective layer is configured to retroreflect at least a portion of an electromagnetic wave having a frequency in the range from about 0.5 GHz to about 100 GHz.
Abstract:
Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.