Abstract:
A device for obtaining a RCC signal and related methods are described herein improves the reliability of the RCC signal reception and demodulation. In one aspect, a device configured to obtain a RCC signal includes: a receiving circuit to receive an analog AM RCC signal and to process said analog AM RCC signal to generate a digital AM RCC signal; and a demodulation circuit in connection with said receiving circuit, to demodulate said digital AM RCC signal to generate the RCC signal. In another aspect, a method for obtaining a RCC signal includes: processing a received analog AM RCC signal to generate a digital AM RCC signal; and demodulating said digital AM RCC signal to generate said RCC signal. Since the digital processing method is more reliable than the analog processing method, the reliability of RCC signal reception and demodulation are improved.
Abstract:
Adaptive motion information cost estimation is achieved in processing video information. A transmission cost is estimated that is associated with encoding a motion vector difference (mvd) in motion vectors that describe a motion characteristic of the video information. The mvd is encoded based on minimizing a rate estimation mismatch associated with the motion vectors. The encoding step includes computing a bit count associated with the mvd using CABAC. A value is indexed that corresponds to the cost from one or more entries in the lookup table. The cost relates to context or content characteristics associated with the video information. The lookup table is adaptively updated based on a change in the contextual information or content characteristics. The value is dynamically adjustable based on the change.
Abstract:
A speaker includes a vibrating unit, and a magnetic circuit unit. The vibrating unit includes a diaphragm, an elastic plate coupled with the diaphragm, and a voice coil electrically connecting to the elastic plate. The vibrating unit is mounted to and positioned by the magnetic circuit unit. A projection of the diaphragm on the magnetic circuit unit is disposed within an outline of the magnetic circuit unit. The speaker has no frame or any structure with a frame configuration, which makes the magnetic circuit unit larger and more powerful.
Abstract:
A micro-speaker includes a vibrating unit including a diaphragm and a voice coil, and a magnetic circuit unit supporting the diaphragm. The diaphragm includes a position portion serving as an edge of the diaphragm. The magnetic circuit unit includes a base board, a first magnetic conduction member disposed at a central portion of the base board, a second magnetic conduction member around the first magnetic conduction member, and a magnetic gap formed by the first and second magnetic conduction members. A projection of the diaphragm along the vibration direction on the base board is within an outline of the base board. The micro-speaker has no frame or any structure with a frame configuration, which makes the magnetic circuit unit enlarge for providing improved performance.
Abstract:
A value of one or more Lagrangian multipliers is adaptively estimate and update based, at least in part, on the video source statistics or dynamic programming. Methods, techniques, and systems involve determining a first Lagrangian multiplier with a video encoder, and updating a second Lagrangian multiplier with the first Lagrangian multiplier. The system can include a Lagrangian multiplier Estimation Module that estimates the Lagrangian multiplier, and a Lagrangian multiplier Update Module that updates the current Lagrangian multiplier using the estimated Lagrangian multiplier. The Online Lagrangian Multiplier Estimation Module may function with Rate Distortion Slope Estimation with Rate Distortion Optimized Mode Decision; Rate Distortion Slope Estimation with Local Approximation; Rate Distortion Slope Estimation with Local Information; or Rate Distortion Slope Estimation with Global Information. The Lagrangian Multiplier Update Module may function with Direct Update; Step Size Update; Sliding Window Update; or Periodical Update.
Abstract:
Video compression is performed under multiple distortion constraints. Video coding includes determining a first set of Lagrangian cost values for multiple coding modes using a first distortion metric, determining a second set of Lagrangian cost values for the multiple coding modes using a second distortion metric, and selecting one of the coding modes based on the first set of Lagrangian cost values and the second set of Lagrangian cost values to encode a pixel block using the selected coding mode. The distortion metrics can include information associated with video display characteristics such as screen display size, video processing performance, a distortion characteristic, a temporal characteristic, or a spatial characteristic. The distortion metrics can also include characteristics of multiple video displays, such as parameters for usage, importance, design, and the technology type of the video displays.
Abstract:
A speaker includes a case, a dome, a diaphragm, a first voice coil, a second voice coil, a first pole plate, a second pole plate, a first magnet, a second magnet and a yoke. The case is supported on the frame to form a receiving room therebetween. The yoke includes a bottom portion and a side portion perpendicularly extending upward from the center of the bottom portion. A first magnetic gap is formed between the inner wall of the side portion and the outer wall of the magnet for receiving the first voice coil, and a second magnetic gap is formed between the outer wall of the side portion and the inner wall of the second magnet for receiving the second voice coil.
Abstract:
A method for making a magnesium-based composite material includes mixing nanoscale reinforcements with a melted magnesium-based material to obtain a pre-mixture. The pre-mixture is agitated by an ultrasonic process to obtain a mixture. The mixture is sprayed to a substrate.
Abstract:
The present disclosure provides a method for making magnesium-based composite material. The method comprises the following steps. Firstly, a semi-solid-state magnesium-based material is provided. Secondly, at least one nanoscale reinforcement is added into the semi-solid-state magnesium-based material to obtain a semi-solid-state mixture. Thirdly, the semi-solid-state mixture is heated to a liquid-state mixture. Fourthly, the liquid-state mixture is ultrasonically processed. Fifthly, the liquid-state mixture is cooled to obtain the magnesium-based composite material.
Abstract:
The present disclosure provides a method for making aluminum-based composite material. The method includes the following steps. First, a aluminum-based material in semi-solid state is provided. Second, at least one nanoscale reinforcement is added into the aluminum-based material in semi-solid state to obtain a mixture in semi-solid state. Third, the mixture in semi-solid state is heated to a mixture in liquid state. Fourth, the mixture in liquid state is ultrasonically processed. Fifth, the mixture in liquid state is cooled to obtain the aluminum-based composite material.