Abstract:
A control part includes a transmission angle control unit that controls a transmission angle of ultrasonic waves transmitted from three ultrasonic arrays, a first reflected wave measuring unit that measures a first arrival time of a first reflected wave which is reflected by a blood vessel and is first to arrive at the ultrasonic arrays, a second reflected wave measuring unit that measures a second arrival time of a second reflected wave which arrives at the ultrasonic arrays after a predetermined time from the first arrival time, an outside diameter computation unit that computes an outside diameter of the blood vessel based on the first arrival time of three first reflected waves, and an inside diameter of the blood vessel computation unit that computes an inside diameter based on the second arrival time of three second reflected waves.
Abstract:
The present invention provides an undercoat solution including a radical-polymerizable compound having a phosphoric acid group, an ink-jet recording method including applying an undercoat solution containing a radical-polymerizable compound having a phosphoric acid group; partially curing the applied undercoat solution; and discharging an ink, which is curable by irradiation with an active energy ray, onto the partially cured undercoat solution to record an image, and an ink-jet recording device including an undercoat solution application unit which applies an undercoat solution containing a radical-polymerizable compound having a phosphoric acid group; an undercoat solution curing unit which partially cures the undercoat solution; and an image recording unit which discharges an ink onto the partially cured undercoat solution to record an image.
Abstract:
A piezoelectric sensor device includes a piezoelectric element, a signal processing unit, a polarization processing unit and a connection switching unit. The piezoelectric element has a piezoelectric body and a pair of electrodes sandwiching the piezoelectric body. The signal processing unit is configured to execute at least one of signal input from the piezoelectric element, and signal output to the piezoelectric element. The polarization processing unit is configured to execute polarization processing in which polarization voltage is applied to the piezoelectric element. The connection switching unit is configured to switch between a first connection state with which the electrodes and the signal processing unit are connected, and a second connection state with which the electrodes and the polarization processing unit are connected.
Abstract:
A liquid coating apparatus has: a coating roller which has a coating surface; a liquid holding unit which abuts against the coating surface of the coating roller so as to form a liquid holding space; a medium support member which faces the coating surface in such a manner that the medium support member and the coating roller nip and support the medium; an abutment pressure-varying device which adjusts at least one of a first abutment pressure between the coating surface of the coating roller and the liquid holding unit and a second abutment pressure between the coating surface of the coating roller and the medium; and a control device which controls the abutment pressure-varying device according to a relative position of the medium with respect to the coating roller, wherein the coating roller rotates while the medium is sandwiched by the medium support member and the coating roller in such a manner that the liquid is fed to the coating surface from the liquid holding unit and the liquid is transferred to the medium from the coating surface.
Abstract:
The liquid application apparatus applies liquid to media of a plurality of types having different widths in a widthwise direction that is perpendicular to a direction of conveyance of the media. The liquid application apparatus includes: a liquid application member which has an application surface applying the liquid to the media; and a liquid holding member which has a plurality of recesses arranged in the widthwise direction, a plurality of liquid supply ports arranged respectively in the recesses, and a plurality of liquid discharge ports arranged respectively in the recesses, the liquid holding member forming a plurality of liquid chambers with the recesses by abutting against the application surface of the liquid application member. The liquid is supplied through the liquid supply ports and discharged through the liquid discharge ports, respectively and independently for the liquid chambers as selected in accordance with one of the widths of the media so that the liquid is applied only to a region that is inside a range of the one of the widths of the media, of the application surface of the liquid application member.
Abstract:
A control part includes a transmission angle control unit that controls a transmission angle of ultrasonic waves transmitted from three ultrasonic arrays, a first reflected wave measuring unit that measures a first arrival time of a first reflected wave which is reflected by a blood vessel and is first to arrive at the ultrasonic arrays, a second reflected wave measuring unit that measures a second arrival time of a second reflected wave which arrives at the ultrasonic arrays after a predetermined time from the first arrival time, an outside diameter computation unit that computes an outside diameter of the blood vessel based on the first arrival time of three first reflected waves, and an inside diameter of the blood vessel computation unit that computes an inside diameter based on the second arrival time of three second reflected waves.
Abstract:
An active-energy ray curable ink-jet recording apparatus includes: an active-energy ray irradiation source; a plurality of full-line ink-jet heads which eject a liquid functional material that is curable by an active-energy ray, onto a recording medium which is scanned and transported; and a head controller for controlling the heads to form an image on the recording medium, wherein the full-line ink-jet heads include: a head arrangement having adjacent combinations of at least one set of colors in a complementary relationship; and active-energy ray irradiation sources which are placed respectively for each of the combinations on downstream sides of the combinations in the scanning transporting direction.
Abstract:
The invention is directed to an ink-jet recording apparatus including: a recording medium transport unit as defined herein; a full-line ink-jet head as defined herein; and an ultraviolet light illumination unit as defined herein, wherein the ultraviolet light illumination unit comprises an aperture-type hot-cathode tube, or an ultraviolet-setting ink-jet recording apparatus including: a recording medium transport unit as defined herein; and ink-jet head as defined herein; and an ultraviolet light illumination unit as defined herein, wherein: the ultraviolet light illumination unit comprises plural aperture-type hot-cathode tubes and apertures of at least one set of aperture-type hot-cathode tubes are rotated so that an overlap of their illumination regions is increased.
Abstract:
An ink jet recording method comprising: applying an undercoating liquid containing a monomer represented by the formulae (I) or (II) onto a recording medium; partially curing the undercoating liquid that has been applied onto the recording medium; and recording an image by ejecting an ink that is curable by irradiation with actinic energy onto the partially cured undercoating liquid. In formulae (I) and (II), R1 represents a hydrogen atom, halogen atom, or alkyl group having 1 to 4 carbon atoms; X1 represents a divalent linking group; R2 and R3 represent a substituent; n represents an atom group that is necessary for formation of a cyclic hydrocarbon structure that may contain —C(O)— and/or —C(O)O— together with a hydrocarbon linkage; k represents an integer of from 1 to 6; and q and r represent an integer of from 0 to 5, and wherein k, q and/or r are 2 or more, two or more of R1, X1, R2 and/or R3 may be the same as or different from each other.
Abstract:
A liquid coating apparatus has: a coating roller which has a coating surface; a liquid holding unit which abuts against the coating surface of the coating roller so as to form a liquid holding space; a medium support member which faces the coating surface in such a manner that the medium support member and the coating roller nip and support the medium; an abutment pressure-varying device which adjusts at least one of a first abutment pressure between the coating surface of the coating roller and the liquid holding unit and a second abutment pressure between the coating surface of the coating roller and the medium; and a control device which controls the abutment pressure-varying device according to a relative position of the medium with respect to the coating roller, wherein the coating roller rotates while the medium is sandwiched by the medium support member and the coating roller in such a manner that the liquid is fed to the coating surface from the liquid holding unit and the liquid is transferred to the medium from the coating surface.