摘要:
A semiconductor device comprises a plurality of gate lines composed of line shapes to function as gate electrodes in a plurality of transistors and separated from a substrate by a gate insulating layer, each having an upper metal silicide layer; and a plurality of source/drain regions formed on the substrate between said gate lines solely by carrying out impurity implantation processes.
摘要:
A flash memory having a charge-storage dielectric layer. According to one embodiment, charge-storage dielectric layers are formed over the first and second active regions. The charge-storage layer over the first active region is not connected to the charge-storage layer over the second active region. A gate line overlies the charge-storage layer and extends across the first and second active regions and the isolation region. The charge-storage layer can be formed only where a gate line intersects an active region of a semiconductor substrate, not on an isolation region. Thus, undesirable influence or disturbance from adjacent memory cells can be avoided.
摘要:
A semiconductor device comprises a plurality of gate lines composed of line shapes to function as gate electrodes in a plurality of transistors and separated from a substrate by a gate insulating layer, each having an upper metal silicide layer; and a plurality of source/drain regions formed on the substrate between said gate lines solely by carrying out impurity implantation processes.
摘要:
A shallow trench isolation type semiconductor device is described, which includes a trench having a flexure in a bottom thereof. The flexure has a step difference of about 100 Å or more, and is preferably made at a middle area. Conventionally, a gate insulating layer includes a thin area of about 100 Å or less and a thick area of about 200 Å or more. On the basis of a bottom of a trench peripheral region, a middle part of the flexure may be concave or convex. Particularly, the foregoing device can effectively be applied to a self-aligned flash memory in which a width of a trench between one active region and another is about 3 micrometers or less.
摘要:
A flash memory having a charge-storage dielectric layer and a method for forming the same are provided. According to one embodiment, charge-storage dielectric layers are formed over the first and second active regions. The charge-storage layer over the first active region is not connected to the charge-storage layer over the second active region. A gate line overlies the charge-storage layer and extends across the first and second active regions and the isolation region. The charge-storage layer can be formed only where a gate line intersects an active region of a semiconductor substrate, not on an isolation region. Thus, undesirable influence or disturbance from adjacent memory cells can be avoided.
摘要:
A non-volatile memory device having a MONOS (Metal-oxide-nitride-oxide-semiconductor) gate structure is provided. This device includes a selection transistor and a cell transistor including a cell gate insulation layer formed in a cell array area and a low-voltage MOS transistor having a low-voltage gate insulation layer and a high-voltage MOS transistor having a high-voltage gate insulation layer formed in a peripheral circuit area. The low-voltage gate insulation layer is thinner than the high-voltage gate insulation layer. The low-voltage gate insulation layer can also be thinner than the equivalent thickness of the cell gate insulation layer.
摘要:
Embodiments of the invention provide a method that includes forming a selection transistor and a cell transistor that includes a cell gate insulation layer in a cell array area. The method also includes forming a low-voltage MOS transistor having a low-voltage gate insulation layer and a high-voltage MOS transistor having a high-voltage gate insulation layer in a peripheral circuit area. The low-voltage gate insulation layer is formed thinner than the high-voltage gate insulation layer. The low voltage gate insulation layer may also be formed thinner than the equivalent thickness of the cell gate insulation layer.