Abstract:
A 3D image display apparatus and a 3D image display method are provided. The 3D image display apparatus generates a 2D image region and a 3D image region, forms shutter patterns for the 3D and 2D image regions, and adjusts a light emitting direction according to the shutter patterns. Accordingly, the 2D and 3D images may be selectively displayed on one screen.
Abstract:
An active lens includes: a first nanoelectrode unit; a second nanoelectrode unit formed to face the first nanoelectrode unit; and a liquid crystal layer disposed between the first nanoelectrode unit and the second nanoelectrode unit. Liquid crystal molecules of the liquid crystal layer are aligned according to an electric field formed by a voltage applied to the first and second nanoelectrode units to form a refractive power.
Abstract:
Provided is a transflective display apparatus including a light source, a light guide plate guiding light from the light source or incident external light toward the inside, emitting the light or the incident external light to a light emitting surface of the light guide plate, and including a diffusion reflective member formed on the light emitting surface, a color reflective member disposed in a lower portion of the light guide plate and including a plurality of arrayed color regions for reflecting light of a color, a light modulation member disposed in an upper portion of the light guide plate, modulating light, and forming an image, including a plurality of pixel regions corresponding to the plurality of color regions, respectively, each of the plurality of pixel regions including an effective region and an ineffective region, wherein the diffusion reflective member is disposed to face the ineffective region.
Abstract:
Light guide plates having a filled-in type light emitting structure, display apparatuses using a light guide plate and methods of fabricating the same are provided, the light guide plates include a transparent light guide member, and a reflection member filled in the light guide member. The reflection member reflects light incident on the light guide member. The reflection member has a plurality of light exit holes through which light, reflected inside the light guide member, exits.
Abstract:
Example embodiments relate to a backlight unit and a display apparatus employing the same. The backlight unit may include a light source; a polarization conversion unit configured to convert polarization of light incident from the light source; and a light guide plate configured to emit light incident through the polarization conversion unit. The light guide plate may include a plurality of light emitting portions configured to emit light through specular reflection. The light polarized by the polarization conversion unit may maintain its polarization state when it is subsequently emitted from the light guide plate.
Abstract:
A display apparatus according to example embodiments may include a light source; an all-in-one type light guide plate; a reflective plate; and a display panel. The all-in-one type light guide plate may include a light guide member and light emitting members, wherein the light guide member reflects light incident from the light source toward the light emitting members, and the light emitting members protrude from one side of the light guide member and emit light incident from the light guide member. The light guide member and the light emitting members may be integrally formed or individually combined to form an all-in-one type light guide plate. The display apparatus may form an image using light from a backlight unit and external light.
Abstract:
Provided is an apparatus and method for preventing the distortion of an image. The apparatus includes a signal insertion portion that inserts a sensing signal in an image signal that has information about an image and outputs the image signal in which the sensing signal is inserted as a scanning signal. A scanning portion generates light corresponding to the scanning signal and scans the light while operating in response to a drive signal that determines a direction for scanning the light. A detection portion senses the scanned light and detects the sensing signal. A sensing condition reflection portion checks whether the detected sensing signal matches a preset sensing condition and resets at least one of the image signal and the drive signal in response to a result of the check.
Abstract:
A diffraction grating including a substrate, and a grating member formed on the substrate, the grating member having a stepped structure including steps, the number of which corresponds to an odd number greater than or equal to three to provide an odd phase structure. The heights of the steps of the grating member are determined such that the light beams diffracted by their corresponding steps substantially have a phase difference of π with reference to a diffracted light beam of a reference wavelength.
Abstract:
A multi-touch sensing display apparatus is provided. The multi-touch sensing display apparatus may include a back light unit, a display panel, a sensor unit on a display surface of the display panel, and a touch light source unit providing light to be diffused by a touch of a user so that the sensor unit senses the touch of the user. The touch light source unit may include a touch light source and a transparent light guide plate. The transparent light guide plate may include a light guiding unit and a plurality of light emitting units integrally formed with each other as a single body, wherein the light guiding unit guides light from the touch light source to an inside thereof, and the plurality of light emitting units protrudes from the light guiding unit and emits light from the light guiding unit.
Abstract:
A three-dimensional (3D) image display apparatus that includes a surface-light source device for emitting light in a direction which may be sequentially adjusted, is provided. The 3D image display apparatus includes a display panel for generating images by modulating the light emitted from the surface-light source device according to image information. The 3D image display apparatus also includes a controller for controlling the directivity adjustment of the light from the surface-light source device in a time-sequential manner and the image formation for each visual field of the display panel to be synchronized with each other.