Abstract:
A method of preparing a platinum alloy catalyst for a fuel cell electrode includes: (a) adding a carbon material, a platinum precursor, and a transition metal precursor to ethanol and dispersing the mixture; (b) adding sodium acetate powder or an ammonia solution containing ethanol as a solvent to the solution obtained in step (a) and stirring the resulting solution; (c) adding sodium borohydride to the solution obtained in step (b) and reducing the metal ions of the platinum precursor and the transition metal precursor; and (d) obtaining a platinum alloy catalyst in the form of powder through washing and drying processes. This method can reduce the amount of platinum to be used for manufacturing a fuel cell electrode and thereby reduce the manufacturing cost.
Abstract:
There is provided a method and apparatus for output pulse width modulation in a digital amplifier including: a determining step of adding or subtracting a value corresponding to a predetermined offset to or from an input audio signal alternately according to a period of the input audio signal, thereby determining a sign of a resulting value of adding or subtracting; a switching step of outputting the input audio signal to a first port when the determined sign is positive, and outputting the input audio signal to a second port after inverting the input audio signal into a positive number when the determined sign is negative; an adjusting step of adding a value corresponding to a pulse width for a minimum time required for switching to the audio signals output from the first port and the second port, and outputting a resulting value of adding; and a modulating step of performing pulse width modulation on the audio signals output from the adjusting step and outputting a first modulation signal and a second modulation signal. Accordingly, it is possible to reduce residual noises output from the switching amplifier and bias currents applied to load, so that heat generation decreases and amplification efficiency increases.
Abstract:
An image enhancing method using a mean-separate histogram equalization method is disclosed. An input image signal is divided into two sub-images in a picture unit according to a mean level of the input image signal. Then, cumulative density functions for each of the sub-images are calculated. Afterwards, the input sample is mapped into two gray levels, each of which belongs to a first range and a second range, by using first and second transform functions defined by use of the cumulative density functions, respectively. Finally, one of two mapped levels is selected depending on the magnitude of the input sample. As a result, the brightness of the given image can be preserved while the contrast is enhanced.
Abstract:
A method for interpolating pixel data of an omitted line by use of pixel data from an interlaced scan and an apparatus therefor are described. The pixel interpolation method and apparatus efficiently interpolate edges having various slopes according to a degree of correlation. When an edge has a gentle slope due to extensive correlation, interpolation is performed using a wide-vector. When an error occurs due to high-frequency components such as when bidirectional edges are found, simple vertical interpolation is performed.
Abstract:
A bipolar plate and a direct liquid feed fuel cell stack are provided. The bipolar plate includes a manifold that is coupled with the fuel/oxidant path holes and a plurality of flow channels that are coupled with the manifold. The flow channels are divided into a plurality of groups, where the flow channel of each group forms a serpentine flow path and a length of each flow channel is substantially the same.
Abstract:
A bipolar plate for fuel cells includes a plurality of flow paths in which fuel flows. The flow paths include a first flow path formed by a plurality of flow channels and a second flow path formed by a plurality of islands. A direct liquid fuel cell stack comprises the bipolar plate.
Abstract:
A scroll-type compressor has a scroll plate with at least first and second pressure equalizing passages formed in its end plate such that the first and second pressure equalizing passages will be in the same crescent shaped pocket during at least a portion of a crescent shaped pocket's radially inward movement. The minimum pressure in a back pressure pocket will be adequate to maintain a good seal, any pressure increases will increase in accordance with the increased pressure in the crescent shaped pockets. At no point are both of the pressure equalizing passages blocked and, therefore, the pressure in the interior space does not overwhelm the effective functioning of the back pressure pocket.
Abstract:
The present invention provides a method of synthesizing a nano-sized transition metal catalyst on a carbon support, including dissolving a stabilizer in ethanol thus preparing a mixture solution, adding a support to the mixture solution thus preparing a dispersion solution, dissolving a transition metal precursor in ethanol thus preparing a precursor solution, mixing the precursor solution with the dispersion solution with stirring, and then performing reduction, thus preparing the nano-sized transition metal catalyst. This method enables the synthesis of transition metal nanoparticles supported on carbon powder having a narrow particle size distribution and a wide degree of dispersion through a simple process, and is thus usefully applied to the formation of an electrode material or the like of a fuel cell.
Abstract:
Disclosed herein are a membrane-electrode assembly for a fuel cell, a fuel cell, and a manufacturing method thereof. The present invention forms a micro current collecting layer between a gas diffusion layer and a micro porous layer and surface-contacts a pair of laminates for an electrode so that each electrolyte layer formed by applying an electrolyte solution thereon contacts with each other, thereby shortening a moving distance of electrons to minimize the current collecting resistance and loss and reduce the interface resistance.
Abstract:
The present invention relates to a process for preparing electrode catalyst materials for a polymer electrolyte membrane fuel cell (PEMFC), and particularly to a high-performance platinum-non-platinum mixed electrode catalyst (Pt—RuOs/C) having a physically mixed structure of RuOs alloy and platinum materials, which is prepared by adding a small amount of platinum (Pt) to RuOs alloy materials highly dispersed on a carbon support, where the amount of platinum used is drastically reduced as compared to the conventional platinum materials, thus lowering the manufacturing cost.