摘要:
The present invention provides a connector device or reconstitution device (10) for placing a first container (12), such as a liquid container (e.g. flexible container or syringe), in fluid communication with a second container (14), such as a drug vial. The connector device (10) has a first sleeve (32) having a first end (36) and a second end (38). The first sleeve (32) has at the first end (36), a first attaching member (30) adapted to attach to the liquid container (12). The connector device (10) also has a second sleeve (34) having a first end (48) and a second end (50). A second attaching member (28) is attached on the second end (50) of the second sleeve (34) and is adapted to attach to the second container (14). The second attaching member (28) has a sealing member (84). A piercing member (76) projects within the sleeves (32,34) for providing a fluid flow path from the first container (12) to the second container (14). The connector device (10) is movable from the inactivated position to the activated position wherein the second sleeve (34) moves axially with respect to the first sleeve (32) and wherein the piercing member places the first container (12) and the second container (14) in fluid communication. The connector device (10) includes structure for preventing premature activation of the connector device (10).
摘要:
Methods for processing substrate surfaces comprising metallic nanoparticles are disclosed. The methods involve providing a substrate surface comprising metallic nanoparticles, and exposing the substrate surface to a plasma.
摘要:
A polymeric web exhibiting a soft and silky tactile impression on at least one side thereof is disclosed. The silky feeling side of the web exhibits a pattern of discrete hair-like fibrils, each of the hair-like fibrils being a protruded extension of the web surface and having a side wall defining an open proximal portion and a closed distal portion. The hair-like fibrils exhibit a maximum lateral cross-sectional diameter of between 2 and 5 mils, and an aspect ratio from 1 to 3. Methods and apparatus for making the polymeric web utilize a three-dimensional forming structure having a plurality of protrusions being generally columnar forms having an average aspect ratio of at least about 1.
摘要:
The present invention relates to an apertured web formed from a polymeric film having permanent hydrophilicity which is suitable for use as a topsheet in an absorbent article. One embodiment of the present invention is a multi-layer polymeric film having a first layer, a second layer, and at least one intermediate layer between the first and second layers, where one of the first or second layers is a block copolymer of a polyether and another polymer and the other layer is a hydrophobic layer as defined herein. Methods of producing such webs are also disclosed. The present invention also pertains to absorbent articles which preferably include a topsheet in accordance with the present invention, a backsheet secured to the topsheet, and an absorbent core positioned between the topsheet and the backsheet.
摘要:
The present invention pertains, in a preferred embodiment, to a fluid-pervious web comprising a first or wearer-contacting surface and a second or garment-facing surface. The web is particularly well suited for use as a topsheet on a disposable absorbent article. The first and second surfaces are separated from one another by an intermediate portion. The first surface of the web provides a structure which exhibits a surface energy less than the surface energy of the intermediate portion. In a preferred embodiment, the web exhibits a plurality of regions of comparatively low surface energy which define surface energy gradients where they interface with higher surface energy web surfaces. More particularly, the present invention pertains to a fluid-pervious web having a plurality of small-scale surface energy gradients which are oriented and located so as to effectively transport fluid away from the first or wearer-contacting surface. The web essentially retains its visual, tactile, and physical properties of the substrate material while achieving the desired surface energy properties. Fluid transport webs according to the present invention preferably include discontinuous, spaced regions defining small scale surface energy gradients on the first surface to aid in small scale fluid movement toward apertures or capillary entrances for transport away from the first surface. Such webs also preferably include small scale surface energy gradients normal to the first surface within a capillary structure to aid in moving fluid away from the first surface and into the capillaries for capillary fluid transport. Web materials suitable for use in the present invention include apertured formed films, apertured and non-apertured nonwoven materials, composite structures, and the like.
摘要:
The present invention pertains, in a preferred embodiment, to a fluid-pervious web comprising a first or wearer-contacting surface and a second or garment-facing surface. The web is particularly well suited for use as a topsheet on a disposable absorbent article. The first and second surfaces are separated from one another by an intermediate portion. The first surface of the web provides a structure which exhibits a surface energy less than the surface energy of the intermediate portion. In a preferred embodiment, the web exhibits a plurality of regions of comparatively low surface energy which define surface energy gradients where they interface with higher surface energy web surfaces. More particularly, the present invention pertains to a fluid-pervious web having a plurality of small-scale surface energy gradients which are oriented and located so as to effectively transport fluid away from the first or wearer-contacting surface. The web essentially retains its visual, tactile, and physical properties of the substrate material while achieving the desired surface energy properties. Fluid transport webs according to the present invention preferably include discontinuous, spaced regions defining small scale surface energy gradients on the first surface to aid in small scale fluid movement toward apertures or capillary entrances for transport away from the first surface. Such webs also preferably include small scale surface energy gradients normal to the first surface within a capillary structure to aid in moving fluid away from the first surface and into the capillaries for capillary fluid transport. Web materials suitable for use in the present invention include apertured formed films, apertured and non-apertured nonwoven materials, composite structures, and the like.
摘要:
Thermally bonded absorbent structures for catamenial products, in particular catamenial pads, that provide improved ability in acquiring, distributing and storing aqueous body fluids, especially menstrual fluids, as well as better fit and comfort for the user of the products. These structures comprise an optional thermally bonded secondary topsheet, a thermally bonded absorbent core having a relatively higher capillary suction primary fluid distribution layer, an optional but preferred relatively lower capillary suction secondary distribution layer, a storage layer having absorbent gelling material, and an optional fibrous "dusting" layer. These thermally bonded absorbent structures are particularly useful with catamenial pads having a primary fluid pervious topsheet selected from apertured formed film topsheets and high loft nonwoven topsheets.
摘要:
An elastomeric gland is provided for a luer activating device (LAD). and comprises a unique lubricant and/or wetting agent and/or anti-clotting agent incorporated into the elastomer gland during raw material formulation, calendar blending/molding/curing to deliver the surface lubricity and/or wettability and/or avoid slit plane re-knitting and/or gland induced valve stick down of such devices Functional additive chemistries are selected in terms of generated functional performance level, thermal stability against processing, molecular migratability, molecular weight and elastomer substrate of interest. These additives could include lubricants like chemically modified silicone oils and/or wetting agents like silicone-based surfactant. Elastomer gland with wetting agent would ease fluid path priming and minimize micro air bubble adherence to gland surface. Additives may also include anti-clotting agents intended to reduce potential for clot formation within the fluid path and interstitial space of the valve during blood sampling and infusion.
摘要:
A polymeric web exhibiting a soft and silky tactile impression on at least one side thereof is disclosed. The silky feeling side of the web exhibits a pattern of discrete hair-like fibrils, each of the hair-like fibrils being a protruded extension of the web surface and having a side wall defining an open proximal portion and a closed distal portion. The hair-like fibrils exhibit a maximum lateral cross-sectional diameter of between 2 and 5 mils, and an aspect ratio from 1 to 3. Methods and apparatus for making the polymeric web utilize a three-dimensional forming structure having a plurality of protrusions being generally columnar forms having an average aspect ratio of at least about 1.
摘要:
An elastomeric gland is provided for a luer activating device (LAD). and comprises a unique lubricant and/or wetting agent and/or anti-clotting agent incorporated into the elastomer gland during raw material formulation, calendar blending/molding/curing to deliver the surface lubricity and/or wettability and/or avoid slit plane re-knitting and/or gland induced valve stick down of such devices Functional additive chemistries are selected in terms of generated functional performance level, thermal stability against processing, molecular migratability, molecular weight and elastomer substrate of interest. These additives could include lubricants like chemically modified silicone oils and/or wetting agents like silicone-based surfactant. Elastomer gland with wetting agent would ease fluid path priming and minimize micro air bubble adherence to gland surface. Additives may also include anti-clotting agents intended to reduce potential for clot formation within the fluid path and interstitial space of the valve during blood sampling and infusion.