Abstract:
Described herein is a novel transcoding technique called lossless inter frame transcoding (LIFT) for improving the error resilience of video streaming. According to various embodiments, conventional coded blocks are selectively transcoded into new transcoded blocks. At the decoder, the transcoded blocks can be transcoded back to the conventional coded blocks when prediction is available and can also be robustly decoded independently when prediction is unavailable. According to another embodiment, an offline transcoding and online composing technique is provided for generating a composite frame using the transcoded and conventional coded blocks and adjusting the ratio of the transcoded blocks, thereby achieving error robustness scalability.
Abstract:
Efficient encoding and/or decoding of digital video is provided using multiple candidate reference frames, making playback of the digital video optionally reversible. For example, a source can be encoded as duplex coded frames having multiple candidate reference frames. The reference frames can be previous or future frames, and the duplex coded frames can be encoded at a bit-rate that ensures lossless decoding using any of the candidate reference frames. Therefore, the duplex coded frames can encoded in normal and/or reverse temporal order. In this regard, the ability to decode digital video frames using either a single previous or future frame enables reversible digital video, bit-stream switching and video splicing arbitrary time points, and provides for increased error resilience.
Abstract:
Systems and methodologies for employing bidirectionally decodable Wyner-Ziv video coding (BDWZVC) are described herein. BDWZVC can be used to generate M-frames, which have multiple reference frames at an encoder and can be forward and backward decodable. For example, optimal Lagrangian multipliers for forward and backward motion estimation can be derived and/or utilized. The optimal Lagrangian multiplier for backward motion estimation can be approximately twice as large as the optimal Lagrangian multiplier for forward motion estimation. Further, an optimal P-frame/M-frame selection scheme can be employed to enhance rate-distortion performance when video is transmitted over an error prone channel. Accordingly, a first frame in a group of pictures (GOP) can be encoded as an I-frame, a next m−1 frames can be encoded as P-frames, and a remaining n−m frames can be encoded as M-frames, where n can be a length of the GOP and m can be optimally identified.
Abstract:
Described herein is a novel transcoding technique called lossless inter frame transcoding (LIFT) for improving the error resilience of video streaming. According to various embodiments, conventional coded blocks are selectively transcoded into new transcoded block. At the decoder, the transcoded block can be transcoded back to the conventional coded block when the prediction is available and can also be robustly decoded independently when the prediction is unavailable. According to another embodiment, an offline transcoding and online composing technique is provided for generating a composite frame using the transcoded and conventional coded blocks and adjusting the ratio of the transcoded blocks, thereby achieving error robustness scalability.
Abstract:
Efficient encoding and/or decoding of digital video is provided using multiple candidate reference frames, making playback of the digital video optionally reversible. For example, a source can be encoded as duplex coded frames having multiple candidate reference frames. The reference frames can be previous or future frames, and the duplex coded frames can be encoded at a bit-rate that ensures lossless decoding using any of the candidate reference frames. Therefore, the duplex coded frames can encoded in normal and/or reverse temporal order. In this regard, the ability to decode digital video frames using either a single previous or future frame enables reversible digital video, bit-stream switching and video splicing arbitrary time points, and provides for increased error resilience.
Abstract:
Optimal Heegard-Berger coding methods, devices, and systems are provided based on the disclosed coding schemes. The disclosed schemes facilitate decoding even in the absence of side information, with lower coding complexity than conventional Wyner-Ziv based distributed coding techniques. The disclosed details enable various refinements and modifications according to system design considerations.
Abstract:
Systems and methodologies for employing bidirectionally decodable Wyner-Ziv video coding (BDWZVC) are described herein. BDWZVC can be used to generate M-frames, which have multiple reference frames at an encoder and can be forward and backward decodable. For example, optimal Lagrangian multipliers for forward and backward motion estimation can be derived and/or utilized. The optimal Lagrangian multiplier for backward motion estimation can be approximately twice as large as the optimal Lagrangian multiplier for forward motion estimation. Further, an optimal P-frame/M-frame selection scheme can be employed to enhance rate-distortion performance when video is transmitted over an error prone channel. Accordingly, a first frame in a group of pictures (GOP) can be encoded as an I-frame, a next m−1 frames can be encoded as P-frames, and a remaining n-m frames can be encoded as M-frames, where n can be a length of the GOP and m can be optimally identified.
Abstract:
Improved methods, systems, and devices for Wyner-Ziv video compression are provided based on the disclosed successive resolution refinement techniques. The disclosed resolution refinement schemes improve rate-distortion performance, visual quality and decoding speed with lower complexity than conventional bitplane refinement methods. The disclosed details enable various refinements and modifications according to system design considerations.