Abstract:
Provided is a method of manufacturing a high strength ferritic/martensitic steel. The method includes melting a ferritic/martensitic steel, hot-working the melted ferritic/martensitic steel, normalizing the hot-worked ferritic/martensitic steel at a temperature of about 1050° C. to about 1200° C., tempering the ferritic/martensitic steel at a temperature of about 600° C. or less, and leaving MX precipitates while preventing a M23C6 precipitate from being precipitated, and cold-working and thermal-treating the ferritic/martensitic steel in a multistage fashion, and precipitating M23C6 precipitates. Through the above described configuration, the high strength ferritic/martensitic steel that prevents a ductility from being deteriorated even in a high-temperature environment may be manufactured.
Abstract:
Disclosed herein are a nuclear fuel rod for fast reactors, which includes an oxide coating layer formed on the inner surface of a cladding, and a manufacturing method thereof. The nuclear fuel rod for fast reactors, which includes the oxide coating layer formed on the inner surface of the cladding, can increase the maximum permissible burnup and maximum permissible temperature of the metallic fuel slug for fast reactors so as to prolong the its lifecycle in the fast reactors, thus increasing economic efficiency. Also, the fuel rod is manufactured in a simpler manner compared to the existing method, in which a metal liner is formed, and the disclosed method enables the cladding of the fuel rod to be manufactured in an easy and cost-effective way.
Abstract:
High-Cr ferritic/martensitic steels having an improved tensile strength and creep resistance are provided, which includes 0.04˜0.13 weight % of carbon, 0.03˜0.07 weight % of silicon, 0.40˜0.50 weight % of manganese, 0.40˜0.50 weight % of nickel, 8.5˜9.5 weight % of chromium, 0.45˜0.55 weight % of molybdenum, 0.10˜0.25 weight % of vanadium, 0.02˜0.10 weight % of tantalum, 0.15˜0.25 weight % of niobium, 1.5˜3.0 weight % of tungsten, 0.05˜0.12 weight % of nitrogen, 0.004˜0.008 weight % of boron, and optionally, 0.002˜0.010 weight % of phosphorus or 0.01˜0.08 weight % of zirconium, and iron balance. By regulating the contents of alloying elements such as niobium, tantalum, tungsten, nitrogen, boron, zirconium, carbon, the high-Cr ferritic/martensitic steels with superior tensile strength and creep resistance are provided, and can be effectively used as an in-core structural material for Generation IV sodium-cooled fast reactor (SFR) which is used under high temperature and high irradiation conditions.
Abstract:
Disclosed herein are a nuclear fuel rod for fast reactors, which includes an oxide coating layer formed on the inner surface of a cladding, and a manufacturing method thereof. The nuclear fuel rod for fast reactors, which includes the oxide coating layer formed on the inner surface of the cladding, can increase the maximum permissible burnup and maximum permissible temperature of the metallic fuel slug for fast reactors so as to prolong the its lifecycle in the fast reactors, thus increasing economic efficiency. Also, the fuel rod is manufactured in a simpler manner compared to the existing method, in which a metal liner is formed, and the disclosed method enables the cladding of the fuel rod to be manufactured in an easy and cost-effective way.
Abstract:
Disclosed herein is a high Cr Ferritic/Martensitic steel comprising 0.04 to 0.13% by weight of carbon, 0.03 to 0.07% by weight of silicon, 0.40 to 0.50% by weight of manganese, 0.40 to 0.50% by weight of nickel, 8.5 to 9.5% by weight of chromium, 0.45 to 0.55% by weight of molybdenum, 0.10 to 0.25% by weight of vanadium, 0.02 to 0.10% by weight of tantalum, 0.21 to 0.25% by weight of niobium, 1.5 to 3.0% by weight of tungsten, 0.015 to 0.025% by weight of nitrogen, 0.01 to 0.02% by weight of boron and iron balance. By regulating the contents of alloying elements such as nitrogen, born, the high Cr Ferritic/Martensitic steel with superior tensile strength and creep resistance is provided, and can be effectively used as an in-core component material for sodium-cooled fast reactor (SFR).
Abstract:
Disclosed herein is a high Cr Ferritic/Martensitic steel comprising 0.04 to 0.13% by weight of carbon, 0.03 to 0.07% by weight of silicon, 0.40 to 0.50% by weight of manganese, 0.40 to 0.50% by weight of nickel, 8.5 to 9.5% by weight of chromium, 0.45 to 0.55% by weight of molybdenum, 0.10 to 0.25% by weight of vanadium, 0.02 to 0.10% by weight of tantalum, 0.21 to 0.25% by weight of niobium, 1.5 to 3.0% by weight of tungsten, 0.015 to 0.025% by weight of nitrogen, 0.01 to 0.02% by weight of boron and iron balance. By regulating the contents of alloying elements such as nitrogen, born, the high Cr Ferritic/Martensitic steel with to superior tensile strength and creep resistance is provided, and can be effectively used as an in-core component material for sodium-cooled fast reactor (SFR).
Abstract:
Provided is a method of manufacturing a high strength ferritic/martensitic steel. The method includes melting a ferritic/martensitic steel, hot-working the melted ferritic/martensitic steel, normalizing the hot-worked ferritic/martensitic steel at a temperature of about 1050° C. to about 1200° C., tempering the ferritic/martensitic steel at a temperature of about 600° C. or less, and leaving MX precipitates while preventing a M23C6 precipitate from being precipitated, and cold-working and thermal-treating the ferritic/martensitic steel in a multistage fashion, and precipitating M23C6 precipitates. Through the above described configuration, the high strength ferritic/martensitic steel that prevents a ductility from being deteriorated even in a high-temperature environment may be manufactured.