摘要:
Provided is a method of manufacturing a high strength ferritic/martensitic steel. The method includes melting a ferritic/martensitic steel, hot-working the melted ferritic/martensitic steel, normalizing the hot-worked ferritic/martensitic steel at a temperature of about 1050° C. to about 1200° C., tempering the ferritic/martensitic steel at a temperature of about 600° C. or less, and leaving MX precipitates while preventing a M23C6 precipitate from being precipitated, and cold-working and thermal-treating the ferritic/martensitic steel in a multistage fashion, and precipitating M23C6 precipitates. Through the above described configuration, the high strength ferritic/martensitic steel that prevents a ductility from being deteriorated even in a high-temperature environment may be manufactured.
摘要:
Disclosed herein are a nuclear fuel rod for fast reactors, which includes an oxide coating layer formed on the inner surface of a cladding, and a manufacturing method thereof. The nuclear fuel rod for fast reactors, which includes the oxide coating layer formed on the inner surface of the cladding, can increase the maximum permissible burnup and maximum permissible temperature of the metallic fuel slug for fast reactors so as to prolong the its lifecycle in the fast reactors, thus increasing economic efficiency. Also, the fuel rod is manufactured in a simpler manner compared to the existing method, in which a metal liner is formed, and the disclosed method enables the cladding of the fuel rod to be manufactured in an easy and cost-effective way.
摘要:
The present invention relates to a method for manufacturing zirconium-based alloys containing niobium with superior corrosion resistance for use in nuclear fuel rod claddings. The method of this invention comprises melting of the alloy, β-forging, β-quenching, hot-working, vacuum annealing, cold-working, intermediate annealing and final annealing, whereby the niobium concentration in the α-Zr matrix decreases from the supersaturation state to the equilibrium state to improve the corrosion resistance of the alloy. Such zirconium-based alloys containing niobium are usefully applied to nuclear fuel rod cladding of the cores in light water reactors and heavy water reactors.
摘要:
Disclosed herein are a nuclear fuel rod for fast reactors, which includes an oxide coating layer formed on the inner surface of a cladding, and a manufacturing method thereof. The nuclear fuel rod for fast reactors, which includes the oxide coating layer formed on the inner surface of the cladding, can increase the maximum permissible burnup and maximum permissible temperature of the metallic fuel slug for fast reactors so as to prolong the its lifecycle in the fast reactors, thus increasing economic efficiency. Also, the fuel rod is manufactured in a simpler manner compared to the existing method, in which a metal liner is formed, and the disclosed method enables the cladding of the fuel rod to be manufactured in an easy and cost-effective way.
摘要:
A high Fe-containing zirconium composition having excellent corrosion resistance and a preparation method thereof. Specifically, disclosed are a high Fe-containing zirconium composition having excellent corrosion resistance and a preparation method thereof, the composition comprising: 0.5-1.0 wt % iron; 0.25-0.5 wt % chromium; 0.06-0.18 wt % oxygen; at least one element selected from the group consisting of 0.2-0.5 wt % tin, 0.1-0.3 wt % niobium and 0.05-0.3 wt % copper; and the balance of zirconium. The zirconium alloy has excellent corrosion resistance, and thus can be used as a material for nuclear fuel claddings, spacer grids and nuclear reactor core structures in light water reactor and heavy water reactor nuclear power plants.
摘要:
The present invention is directed to an advanced zirconium alloy having superior corrosion resistance and high strength suitable for fuel rod cladding, spacer grids and other structural components in a reactor core of nuclear power plants.
摘要:
Disclosed herein is a high Cr Ferritic/Martensitic steel comprising 0.04 to 0.13% by weight of carbon, 0.03 to 0.07% by weight of silicon, 0.40 to 0.50% by weight of manganese, 0.40 to 0.50% by weight of nickel, 8.5 to 9.5% by weight of chromium, 0.45 to 0.55% by weight of molybdenum, 0.10 to 0.25% by weight of vanadium, 0.02 to 0.10% by weight of tantalum, 0.21 to 0.25% by weight of niobium, 1.5 to 3.0% by weight of tungsten, 0.015 to 0.025% by weight of nitrogen, 0.01 to 0.02% by weight of boron and iron balance. By regulating the contents of alloying elements such as nitrogen, born, the high Cr Ferritic/Martensitic steel with superior tensile strength and creep resistance is provided, and can be effectively used as an in-core component material for sodium-cooled fast reactor (SFR).
摘要:
Disclosed herein is a high Cr Ferritic/Martensitic steel comprising 0.04 to 0.13% by weight of carbon, 0.03 to 0.07% by weight of silicon, 0.40 to 0.50% by weight of manganese, 0.40 to 0.50% by weight of nickel, 8.5 to 9.5% by weight of chromium, 0.45 to 0.55% by weight of molybdenum, 0.10 to 0.25% by weight of vanadium, 0.02 to 0.10% by weight of tantalum, 0.21 to 0.25% by weight of niobium, 1.5 to 3.0% by weight of tungsten, 0.015 to 0.025% by weight of nitrogen, 0.01 to 0.02% by weight of boron and iron balance. By regulating the contents of alloying elements such as nitrogen, born, the high Cr Ferritic/Martensitic steel with to superior tensile strength and creep resistance is provided, and can be effectively used as an in-core component material for sodium-cooled fast reactor (SFR).
摘要:
Provided is a method of manufacturing a high strength ferritic/martensitic steel. The method includes melting a ferritic/martensitic steel, hot-working the melted ferritic/martensitic steel, normalizing the hot-worked ferritic/martensitic steel at a temperature of about 1050° C. to about 1200° C., tempering the ferritic/martensitic steel at a temperature of about 600° C. or less, and leaving MX precipitates while preventing a M23C6 precipitate from being precipitated, and cold-working and thermal-treating the ferritic/martensitic steel in a multistage fashion, and precipitating M23C6 precipitates. Through the above described configuration, the high strength ferritic/martensitic steel that prevents a ductility from being deteriorated even in a high-temperature environment may be manufactured.
摘要:
The present invention relates to a zirconium alloy composition having excellent corrosion resistance for nuclear applications and a method of preparing the same. The zirconium alloy composition having excellent corrosion resistance for nuclear applications includes 1.3˜2.0 wt % of niobium, 0.05˜0.18 wt % of iron, 0.008˜0.012 wt % of silicon, 0.008˜0.012 wt % of carbon, and 0.1˜0.16 wt % of oxygen, with the balance being zirconium, or includes 2.8˜3.5 wt % of niobium, 0.2˜0.7 wt % of at least one of iron and copper, 0.008˜0.012 wt % of silicon, 0.008˜-0.012 wt % of carbon, and 0.1˜0.16 wt % of oxygen, with the balance being zirconium. The zirconium alloy composition according to the present invention, in which the amount of niobium, acting as a first alloying element, and the amount of at least one of iron and copper, acting as a second alloying element, are appropriately controlled, and silicon, carbon and oxygen are added in appropriate amounts, can exhibit excellent corrosion resistance, and thus can be usefully used as materials for nuclear fuel cladding tubes, support ribs, and core components of light water reactors and heavy water reactors.