Abstract:
Mixer drive apparatus, which provides gear reduction for driving the impeller shaft of the mixer. A drive shaft from an electric motor is parallel to the impeller shaft which extends through a support collar of a housing. The collar has a hole therethrough through which the impeller shaft extends into the housing. A hub is rotatably mounted on the outside of the housing and carries a gear which is coupled to a pinion on the motor drive shaft. A coupling is attached to the hub and bridges the hole in the collar. The end of the impeller shaft is cantilevered and overhung from the coupling. A gap is defined between the impeller shaft and the inside surface of the support collar which is adapted to receive a seal assembly. The seal assembly includes a retainer hub which captures a sleeve containing the seal structure in the gap between the coupling and the retainer. The seal sleeve may readily be removed upon disassembly of the coupling, which has two sections defining a split ring which clamps the upper end of the impeller shaft, and has a thrust plate with a bolt therethrough into the end of the impeller shaft for axially adjusting the location of the shaft so as to bring the seal sleeve into engagement with the coupling for rotation therewith. A support collar on the impeller shaft engages the retaining hub when the coupling releases the shaft for the removal and replacement of the seal sleeve assembly. A seal captured by the collar engages the retainer hub and provides a pressure seal to facilitate replacement of the seal sleeve when the mixer is used with a pressurized vessel.
Abstract:
A machine for mixing solids in portable containers, such as shipping containers, is provided with a drive station which has a mechanism for holding the containers at one end thereof and contains motors and associated drive elements for revolving the container continuously about a generally horizontal axis. The entire drive station is pivotable about another axis which is perpendicular to the axis about which the container and holding mechanism revolves by actuators which are spaced on the opposite side of the drive station from the holding mechanism. The arrangement makes efficient use of factory floor space and provides an opening in the holding mechanism almost entirely around the front of the machines so as to facilitate loading and unloading of containers. The holding mechanism preferably is a clamp structure mounted as a cantilever which applies essentially compressive forces via the top and bottom of the container to the side walls thereof thus eliminating the need for cradles and special appliances or container wall constructions in order to secure the container for rotation.
Abstract:
A mixer system for aggressive (toxic, hazardous, corrosive, etc.) materials which are mixed (agitated, suspended, circulated, etc.) in a vessel with an impeller connected to a drive shaft has the impeller and its shaft mounted in an assembly which extends through an opening into the tank and closes that opening. The assembly has a cylindrical hub with a passageway through which the shaft extends out of an open end of the hub. Bearings which are made of materials resistant to the aggressive material in the tank are mounted in the hub and journal and support the shaft. The passageway is part of a confinement region which is terminated by a confinement shell which separates inner and outer rotors of a magnet coupling. The inner rotor is connected to the shaft, directly or through a gear train (preferably a planetary gear set). The outer rotor is connected to a drive shaft.
Abstract:
A mixer system for aggressive (toxic, hazardous, corrosive, etc.) materials which are mixed (agitated, suspended, circulated, etc.) in a tank with an impeller connected to a drive shaft has the impeller and its shaft mounted in an assembly which extends through an opening into the tank and closes that opening. The assembly has a cylindrical hub with a passageway through which the shaft extends out of an open end of the hub. Bearings which are made of materials which are resistant to the aggressive material in the tank are mounted in the hub and journal and support the shaft. There are no dynamic seals which close the confinement region so that the aggressive materials can be present therein. In the event that it is desirable that the bearings be replaceable or the confinement region be sterilized, or purged, an expandable elastomeric collar may be disposed either at the end of the hub below the bearings, which may then be mounted in a cartridge in a hub which is removable therefrom, or in a plate spaced from the hub. Purge or pressure release passages may be provided which are opened and through which purging or sterilizing gas is introduced into the confinement region.
Abstract:
A modular mixer system which enables motor, transmission, bearing housing and impeller shaft components to be selected and combined as required for particular mixing applications. The components may be assembled to provide either direct drive from the motor to the impeller shaft contained in the bearing housing (without reduction gears), or through a gear transmission (with an interplate and intershaft where seal removal is required), and form a mixer drive subassembly. This subassembly is mounted on mounts which provide portability; these mounts having pivotal clamps for mounting the mixer system on the wall of a tank or the like. Various fixed mounts may also be used, which are in the form of plates or pedestals which rigidly connect the mixer system to a tank or beam above the tank. In all cases the bearing housing is common and forms the core to which the components of the drive assembly and the mount are connected. The bearing housing and the transmission may be of different sizes, but are otherwise interchangeable with other components of like size.In a mixer system adapted to be mounted on a closed tank, a seal unit in the mount (a pedestal, for example) is removable without requiring removal of the motor and gear transmission from the mount by use of an interplate which closes off the gear transmission at the bottom thereof. An intershaft in the interplate transmits power to the impeller shaft which is contained in a bearing housing which is connected to the interplate and is detachable therefrom and removable from the mount. When removed, the shaft and seal are exposed for seal (or stuffing) replacement while the motor and gear transmission remain in place thereby making seal replacement much more rapid and less expensive than when the motor and gears must be removed to get get to the seals.
Abstract:
A system for automatically centering and rigidly retaining a mixer shaft in a mixer drive. A hollow quill in a mixer drive is provided with an axial bore having a first diameter along a central portion thereof and tapering linearly and axially in opposite directions away from the central portion with increasing diameter to define a pair of opposed conical portions of the axial bore on either side of the central bore. A smooth-surface cylindrical mixer shaft inserted into the bore is retained by the tightening of upper and lower tapered cylindrical locks which are slidable along the mixer shaft and have conical outer surfaces which are matable with the upper and lower conical portions of the quill bore. The locks, when urged into wedged relationship between the shaft and the quill bore, automatically center the shaft in the quill in rigid retention. The upper end of the shaft is provided with a thrust plate secured by throughbolts into the quill to press the upper lock into locking relationship. At the lower end of the quill, a bearing retainer ring threaded onto the outer surface of the quill is bored to receive bolts extending through a flange on the lower lock to press the lower lock into locking relationship. The rigidity of the lock increases the first critical frequency of the mixer system and therefore permits operation at high speeds, including rotational frequencies greater than the first critical (natural) frequency of the mixer system.
Abstract:
A mixer assembly including a driven hollow quill having first and second conical portions in an axial bore and being adapted to receive and mate with a mixer shaft assembly including a mixer shaft having a conical chamfer to mate with the first conical portion and a quill shaft disposed on and removable from the end of the mixer shaft. The quill shaft has a threaded aperture which cooperates with a jack screw rotatably mounted within the quill bore to draw the conical chamfer into preloaded centered relationship with the first conical portion of the quill bore. A tapered sleeve lodged between the mixer shaft and the second conical portion of the quill bore distributes radial loads on the shaft over a large area of the quill, thereby preventing damage to the shaft and quill. A seal assembly on the mixer shaft isolates the housing from the interior of the vessel. The seal is readily removed for replacement. First, the tapered sleeve is released from the second conical portion. Then the jack screw is rotated to drive the mixer shaft assembly axially from the quill bore. When the mixer shaft is free of the seal assembly, the shaft is secured to the vessel wall. The quill shaft is disconnected from the mixer shaft, and the jack screw is counter-rotated to withdraw the quill shaft from the seal assembly, permitting the seal assembly to be removed in a radial direction from the mixer assembly.
Abstract:
An in-line blender is provided for mixing a single fluid or blending it with at least one other substance. The blender includes a conduit having a hollow interior disposed about a central axis and a shaft extending longitudinally through the conduit along the central axis. The blender also includes a plurality of stationary mixing stages extending in series along the central axis with each of the mixing stages defining a plurality of spiral channels within the hollow interior of the conduit. Each of the mixing stages includes a plurality of distinct segments extending in series along the central axis. The blender further includes means for adjusting both the angular and the axial position of each of the segments with respect to adjacent segments along the shaft. The in-line blender is assembled by securing a retaining device to one end of the shaft, placing a plurality of mixing elements on the shaft in sliding engagement therewith, and positioning each mixing element at a desired angular and axial position on the shaft. A holding device is secured on a second end of the shaft so as to hold the mixing element in compression between the holding device and the retaining device. The shaft and mixing elements are then placed within a conduit and secured therein so as to prevent relative axial movement therebetween. The retaining device may be utilized to either inject fluids into the line or to sample fluids flowing in the line. The retaining device includes a frame having an outer surface and a hollow interior defining an inner surface. The frame includes at least one opening extending radially from the inner surface to the outer surface. A tubular member extends though the opening into the hollow interior of the frame and the tubular member is releasably affixed to the frame in such a manner that the radial position of the tubular member is adjustable
Abstract:
A modular mixer system which enables motor, transmission, bearing housing and impeller shaft components to be selected and combined as required for particular mixing applications. The components may be assembled to provide either direct drive from the motor to the impeller shaft contained in the bearing housing (without reduciton gears), or through a gear transmission (with an interplate and intershaft where seal removal is required), and form a mixer drive subassembly. This subassembly is mounted on mounts which provide portability; these mounts having pivotal clamps for mounting the mixer system on the wall of a tank or the like. Various fixed mounts may also be used, which are in the form of plates or pedestals which rigidly connect the mixer system to a tank or beam above the tank. In all cases the bearing housing is common and forms the core to which the components of the drive assembly and the mount are connected. The bearing housing and the transmission may be of different sizes, but are otherwise interchangeable with other components of like size.In a mixer system adapted to be mounted on a closed tank, a seal unit in the mount (a pedestal, for example) is removable without requiring removal of the motor and gear transmission from the mount by use of an interplate which closes off the gear transmission at the bottom thereof. An intershaft in the interplate transmits power to the impeller shaft which is contained in a bearing housing which is connected to the interplate and is detachable therefrom and removable from the mount. When removed, the shaft and seal are exposed for seal (or stuffing) replacement while the motor and gear transmission remain in place thereby making seal replacement much more rapid and less expensive than when the motor and gears must be removed to get to the seals.