Abstract:
A memory device is disclosed. A pillar structure comprises a first electrode layer, a dielectric layer overlying the first electrode layer, and a second electrode layer overlying the dielectric layer. A phase change layer covers a surrounding of the pillar structure. A bottom electrode electrically connects the first electrode layer of the pillar structure. A top electrode electrically connects the second electrode layer of the pillar structure.
Abstract:
A chemical-mechanical polishing (CMP) proximity correction method for polishing a wafer is provided. The wafer has a polish area and a protected area. The method includes forming a material layer over the wafer to cover the polish area and the protected area and then forming a protective layer over the material layer. Thereafter, the protective layer is patterned so that the remaining protective layer is at a distance away from the boundary of the polish area to reduce shadowing effects. Because the boundary of the protective layer above the material layer recedes to an area at a distance away from polish area, the whole polish area can be cleanly polished.
Abstract:
A method for forming a phase-change memory element. The method includes providing a substrate with an electrode formed thereon; sequentially forming a conductive layer and a first dielectric layer on the substrate; forming a patterned photoresist layer on the first dielectric layer; subjecting the patterned photoresist layer to a trimming process, remaining a photoresist pillar; etching the first dielectric layer with the photoresist pillar as etching mask, remaining a dielectric pillar; comformally forming a first phase-change material layer on the conductive layer and the dielectric pillar to cover the top surface and side walls of the dielectric pillar; forming a second dielectric layer to cover the first phase-change material layer; subjecting to the second dielectric layer and the first phase-change material layer to a planarization until exposing the top surface of the dielectric pillar; and forming a second phase-change material layer on the second dielectric layer.
Abstract:
A memory device is disclosed. A pillar structure comprises a first electrode layer, a dielectric layer overlying the first electrode layer, and a second electrode layer overlying the dielectric layer. A phase change layer covers a surrounding of the pillar structure. A bottom electrode electrically connects the first electrode layer of the pillar structure. A top electrode electrically connects the second electrode layer of the pillar structure.
Abstract:
A chemical-mechanical polishing (CMP) proximity correction method for polishing a wafer is provided. The wafer has a polish area and a protected area. The method includes forming a material layer over the wafer to cover the polish area and the protected area and then forming a protective layer over the material layer. Thereafter, the protective layer is patterned so that the remaining protective layer is at a distance away from the boundary of the polish area to reduce shadowing effects. Because the boundary of the protective layer above the material layer recedes to an area at a distance away from polish area, the whole polish area can be cleanly polished.
Abstract:
A flash memory cell is described, including at least a substrate, a tunnel oxide layer, a floating gate, an insulating layer, a control gate and an inter-gate dielectric layer. The tunnel oxide layer is disposed on the substrate. The floating gate is disposed on the tunnel oxide layer, and is constituted by a first conductive layer on the tunnel oxide layer and a second conductive layer on the first conductive layer. The second conductive layer has a bottom lower than the top surface of the first conductive layer, and has a bowl-like cross section. The insulating layer is disposed between the floating gates, and each control gate is disposed on a floating gate with an inter-gate dielectric layer between them.
Abstract:
A cleaning device for cleaning the dirt is disclosed. The cleaning device includes a container for receiving the cleaning material therein, a permeating element disposed in the container for introducing the cleaning material, and a cleaning head mounted on one end of the container and connecting with the permeating element for cleaning the dirt.