Abstract:
A laptop computer holder includes a table; a first connector and a second connector arranged at a lower end of the table in which the first connector is sleeved on one armrest of a chair, the second connector is sleeved on the other armrest of the chair, and the first connector is fastened with a bottom end of the table; a bottom of the table provided with a sliding groove extending from one armrest of the chair to the other armrest thereof; and a sliding member arranged in the sliding groove and fastened with the second connector. The first connector and the second connector each include a sleeve hole. The sleeve holes are sleeved on the armrests of the chair respectively.
Abstract:
A composite high reflectivity mirror (CHRM) with at least one relatively smooth interior surface interface. The CHRM includes a composite portion, for example dielectric and metal layers, on a base element. At least one of the internal surfaces is polished to achieve a smooth interface. The polish can be performed on the surface of the base element, on various layers of the composite portion, or both. The resulting smooth interface(s) reflect more of the incident light in an intended direction. The CHRMs may be integrated into light emitting diode (LED) devices to increase optical output efficiency.
Abstract:
In an embodiment, an apparatus comprises a buffer, a plurality of processors, and a processor control module. The processor control module is to manage how many of the plurality of processors are used to process data from the buffer based at least in part on an amount of the data stored in the buffer.
Abstract:
A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 Å. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.
Abstract:
A pipeline A/D converter and its single redundancy bit digital correction are provided. The single redundancy bit digital correction includes the following steps: substages except for the last one quantizes input voltage, calculates the residual voltage, which is amplified and shifted to the middle part of the reference voltage range, and outputs to the following substage until the last one, which only quantizes the input voltage; the code and offset code of each substage corresponding to the quantized thermometer code are calculated; the offset codes of all stages are added by weight to get total offset code; and codes of all substages are added by weight, to which the total offset code is added. The comparator offset error is corrected to obtain an output code which identifies the negative or positive overflow of input signals. The A/D converter adopting the above digital correction is provided.
Abstract:
The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a transistor region and a resistor region; forming a shallow trench isolation (STI) on the substrate of the resistor region; forming a tank in the STI of the resistor region; and forming a resistor in the tank and on the surface of the STI adjacent to two sides of the tank.
Abstract:
A composite article includes a glass part and a plastic part. The glass part includes a porous surface defining a plurality of nano-pores. Each nano-pore has a pore opening size between about 50 nm and about 200 nm. The plastic part is molded on the porous surface.
Abstract:
An eddy-current actuated balancer includes a barrel having a locating wall at one end thereof; two balancing wheels mounted around the barrel and carrying a respective counterweight at the border, a washer set between the balancing wheels, an elastic ring and a lock ring and a pulsed magnetic field generator mounted on each balancing wheel. The balancing wheels, the washer and the elastic ring are clamped between the locating wall of the barrel and the lock ring. Each pulsed magnetic field generator is controlled to generate a pulsed magnetic field acting upon the associating balancing wheel during its rotation for inducing an eddy current that causes the associating balancing wheel to make an angular displacement relative to the barrel for balance adjustment.
Abstract:
A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 Å. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.