Abstract:
Nickel-base alloys suitable for use as a weld material to weld high-temperature components (10), such as turbine blades and vanes of gas turbine engines. The nickel-base alloys consist essentially of, by weight, 5 to 10 percent chromium, 3 to 14 percent cobalt, up to 4 percent molybdenum, 3 to 7 percent tungsten, 5 to 9 percent tantalum, 5 to 8 percent aluminum, 0.1 to 2 percent hafnium, 0.005 to 0.03 percent boron, up to 0.15 percent carbon, the balance being nickel and incidental impurities and/or residual elements. Welds (12) formed with the alloys are capable of exhibiting desirable levels of strength and oxidation resistance, while containing little if any rhenium.
Abstract:
A method for preparing a filler-metal weld rod of a filler-metal composition includes the steps of centerless grinding the filler metal weld rod of a forced mixture of a mass of titanium aluminide intermetallic alloy powder that was used to form the weld rod, and hot isostatic pressing the filler-metal weld rod at a temperature greater than 2150° F., at a pressure between about 15,000 pounds per square inch and about 25,000 pounds per square inch and for a time of about 1 to 5 hours, thereby increasing the relative density to between about 98% and about 99%.
Abstract:
A method for manufacturing a turbine damper by a metal injection molding process is disclosed. The damper includes a base section and a wire section, and is formed of a nickel-base or cobalt base superalloy.
Abstract:
Methods for making a reinforced refractory crucible for melting titanium alloys including providing a form, applying a facecoat to the form, the facecoat having at least one facecoat layer, applying a backing about the facecoat, the backing having at least one backing layer, applying at least one reinforcing element to at least a portion of the facecoat layer, the backing layer, or a combination thereof where the reinforcing element includes at least one composition selected from ceramic compositions, metallic compositions, and combinations thereof.
Abstract:
A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700° F. to about 2100° F., thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800° F. to about 2200° F., to form a joined structure.
Abstract:
A system for restoring or regenerating an article, such as turbine blade or vane for a gas turbine engine, includes a first cathode and a second cathode operably disposed in a deposition chamber. The first cathode includes a first deposition material substantially similar in composition to the material of a residual substrate. The second cathode includes a second deposition material able to form an environmental coating on a restored/regenerated component. The first and second cathodes may be sequentially operated without interrupting the vacuum conditions in the deposition chamber. A method for restoring or regenerating an article includes utilizing the first cathode to deposit a layer of first deposition material onto the residual substrate and subsequently applying the environmental coating utilizing a common deposition chamber, and without interrupting the vacuum conditions between depositions.
Abstract:
An article is made by preparing an elongated preform having a net metallic composition, and including a tubular sheath made of a sheath nickel-base alloy, and a core disposed within the tubular sheath and including consolidated powder particles made of a core nickel-base alloy. The net metallic composition is preferably a nickel-base superalloy, and most preferably a high-gamma-prime nickel-base superalloy. The preform is wire drawn to a final maximum transverse size that is less than the initial maximum transverse size, to produce a drawn article. The drawn article may be used as a weld filler material.
Abstract:
A method for welding an article includes producing welding filler metal by the steps of furnishing a powder of a welding-filler-metal composition, preferably a titanium aluminide or a nickel-base superalloy, providing a continuous casting mold having a welding-filler-metal diameter, and melting the powder into a top of the continuous casting mold, while withdrawing a continuous length of the welding filler metal from a bottom of the continuous casting mold. The melting is preferably accomplished using a laser to achieve a concentrated heating zone. The welding filler metal is used to weld an article, by applying an overlay layer or by joining articles together.
Abstract:
Methods of processing compositions containing titanium and aluminum, especially titanium aluminide intermetallic compositions (TiAl intermetallics) based on the TiAl (gamma) intermetallic compound. The methods entail processing steps that include a hot isostatic pressing (HIP) cycle and a heat treatment cycle that can be performed in a single vessel. TiAl intermetallic compositions processed in this manner preferably exhibit a duplex microstructure containing equiaxed and lamellar morphologies.
Abstract:
A method for preparing a filler-metal weld rod of a filler-metal composition includes the steps of centerless grinding the filler metal weld rod of a forced mixture of a mass of titanium aluminide intermetallic alloy powder that was used to form the weld rod, and hot isostatic pressing the filler-metal weld rod at a temperature greater than 2150° F., at a pressure between about 15,000 pounds per square inch and about 25,000 pounds per square inch and for a time of about 1 to 5 hours, thereby increasing the relative density to between about 98% and about 99%.