Abstract:
Provided is an A/D converter including an input terminal, a reference signal line for supplying a reference signal which changes temporally, a comparator, a correction capacitor connected to an inverting input terminal of the comparator; and an output circuit which outputs digital data corresponding to an analog signal input to the input terminal. In a first state in which a total voltage of a first analog signal and an offset voltage of the comparator is held in the correction capacitor, a second analog signal input to the input terminal is supplied to a non-inverting input terminal of the comparator, and the second analog signal or the total voltage is changed using the reference signal, thereby outputting, from the output circuit, digital data.
Abstract:
A solid-state imaging apparatus includes: a plurality of pixels arranged in a matrix; a plurality of amplifier circuits each arranged correspondingly to each of columns of the pixels, for amplifying a signal from the pixel; and a current source transistor whose source is supplied with a power source voltage and which supplies the amplifier circuit with a bias current. When the current source transistor is operating in the saturation region, the gate voltage of the current source transistor that is supplied from the bias line is sampled and held. The gate voltage of the current source transistor with respect to the power source voltage is controlled to the sampled voltage, thereby suppressing variation. This suppression can, in turn, suppress occurrence of line noise and a lateral smear due to difference of drop in voltage of a power source line concerning a column circuit on each row.
Abstract:
A solid-state imaging apparatus includes a plurality of pixels arranged two-dimensionally in a matrix, a reference signal generating circuit adapted to generate a ramp signal, a counter circuit adapted to perform a counting operation according to output of the ramp signal, comparators arranged on a column by column basis and adapted to compare signals read out of the pixels with the ramp signal, and memories arranged on a column by column basis and adapted to store digital data, wherein if output of the comparator is not changed during an AD conversion period, digital data of a predetermined value is stored in the memory. The solid-state imaging apparatus implements overflow handling using a simplified circuit configuration.
Abstract:
An imaging apparatus includes a plurality of unit pixels arranged in a matrix and configured to generate a signal by photoelectric conversion, a plurality of pixel output lines connected to each column of the unit pixels, a plurality of column amplifiers configured to amplify a signal of the pixel output lines, and a driving circuit configured to generate a control signal of the column amplifiers. Each of the column amplifiers includes first and second input terminals, an output terminal, an input capacitance between the first and second input terminals, and a first switch between the second input and output terminals. The driving circuit is configured to generate the control signal so as to make a period for switching the first switch from a conductive state to a non-conductive state longer than a period for switching the first switch from the non-conductive state to the conductive state.
Abstract:
A solid-state imaging apparatus includes a plurality of pixels arrayed in a matrix, and configured to generate signals by photoelectric conversion; a plurality of read-out circuits disposed on each column of the plurality of pixels arrayed in a matrix pattern, and configured to read out the signals from the plurality of pixels; a plurality of comparison units configured to compare the signals output from the plurality of read-out circuits with a reference signal whose level changes with time; a counter configured to count a clock signal after the level of the reference signal starts a change; a storage unit configured, when a magnitude relationship between the signals output from the plurality of the read-out circuits and the reference signal is reversed; and a reset unit configured to reset the count value stored in the storage unit.
Abstract:
An imaging apparatus includes a plurality of unit pixels arranged in a matrix and configured to generate a signal by photoelectric conversion, a plurality of pixel output lines connected to each column of the unit pixels, a plurality of column amplifiers configured to amplify a signal of the pixel output lines, and a driving circuit configured to generate a control signal of the column amplifiers. Each of the column amplifiers includes first and second input terminals, an output terminal, an input capacitance between the first and second input terminals, and a first switch between the second input and output terminals. The driving circuit is configured to generate the control signal so as to make a period for switching the first switch from a conductive state to a non-conductive state longer than a period for switching the first switch from the non-conductive state to the conductive state.
Abstract:
A solid-state imaging apparatus includes: a pixel region including a plurality of pixels, each including a photoelectric conversion element, arranged in matrix, and a reset switch for discharging electric charge of the photoelectric conversion element; and a first scanning circuit for supplying a reset control signal for controlling an operation of the reset switch, the pixel region and the first scanning circuit being formed on a semiconductor substrate, in which the pixel region includes a first pixel region and a second pixel region, and the first scanning circuit includes a first decoder for controlling the operation of the reset switch arranged in the first pixel region, and a second decoder for controlling the operation of the reset switch arranged in the second pixel region.
Abstract:
Dark current from a transfer transistor is suppressed and power-supply voltage in a second semiconductor substrate is lowered. A solid-state image pickup device includes a pixel array, a plurality of common output lines receiving signals read out from a plurality of pixels, a transfer scanning unit sequentially driving the plurality of transfer transistors, a signal processing unit processing the signals output to the common signal lines, and a level shift unit making amplitude of a pulse supplied to a gate of the transfer transistor larger than amplitude of a pulse supplied to a gate of a transistor constituting the signal processing unit. The pixel array and the level shift unit are arranged on a first semiconductor substrate, whereas the plurality of common output lines and the signal processing unit are arranged on a second semiconductor substrate.
Abstract:
The present invention relates to a solid-state image pickup device. The device includes a first substrate including a photoelectric conversion element and a transfer gate electrode configured to transfer charge from the photoelectric conversion element, a second substrate having a peripheral circuit portion including a circuit configured to read a signal based charge generated in the photoelectric conversion element, the first and second substrates being laminated. The device further includes a multilayer interconnect structure, disposed on the first substrate, including an aluminum interconnect and a multilayer interconnect structure, disposed on the second substrate, including a copper interconnect.
Abstract:
There is provided an image pickup device, including a photoelectric conversion element converting light into charges, a transfer gate for transferring the converted charges to a floating node, a source follower transistor for outputting a signal based on a voltage of the floating node to a signal line, and a clip circuit clipping the signal line at a first voltage and a second voltage.