Abstract:
This invention relates in part to plant breeding and herbicide tolerant plants. This invention includes a novel aad-1 transformation event in corn plants comprising a polynucleotide sequence, as described herein, inserted into a specific site within the genome of a corn cell. In some embodiments, said event/polynucleotide sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. Additionally, the subject invention provides assays for detecting the presence of the subject event in a sample (of corn grain, for example). The assays can be based on the DNA sequence of the recombinant construct, inserted into the corn genome, and on the genomic sequences flanking the insertion site. Kits and conditions useful in conducting the assays are also provided.
Abstract:
A nucleic acid molecule encoding a 5-enolpyruvyl-3-phosphoshikimic acid synthase (EPSPS) that provides resistance to glyphosate is provided, that has been optimized for expression in both monocotyledonous and dicotyledonous plants and preferably in soybeans. Methods of use are also provided.
Abstract:
This invention relates in part to plant breeding and herbicide tolerant plants. This invention includes a novel aad-1 transformation event in corn plants comprising a polynucleotide sequence, as described herein, inserted into a specific site within the genome of a corn cell. In some embodiments, said event/polynucleotide sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. Additionally, the subject invention provides assays for detecting the presence of the subject event in a sample (of corn grain, for example). The assays can be based on the DNA sequence of the recombinant construct, inserted into the corn genome, and on the genomic sequences flanking the insertion site. Kits and conditions useful in conducting the assays are also provided. The subject invention also includes related methods of controlling weeds.
Abstract:
Disclosed is a system for treating waste water. The system may be applied to any application for the treatment of waste water which benefits from an equalized flow into the waste water treatment processes, such as industrial batch discharges, storm water settling and screening, and septic receiving at a waste water treatment plant. The system comprises a single primary settling tank for the processes of grit removal, flow equalization, fine screening and primary clarification. The system further comprises the use of a flow measurement device on the discharge side of the primary settling tank to provide a uniform flow to downstream processes. The system further comprises placement of a fine screen on a discharge mechanism which controls the effluent flow from the primary settling tank.
Abstract:
A driven decanter assembly for a wastewater primary treatment system, comprising a longitudinal decanter disposable in the wastewater and having a longitudinal trough and a horizontal entrance weir, a polygonal or arcuate screen attached to the decanter and having at least two screen surfaces disposable below the surface of the wastewater outside of the trough, and a floating baffle pivotably mounted to the decanter and disposable in the wastewater outside of the screen. The driven decanter assembly can directly replace a prior art driven decanter in any waste water primary treatment system.
Abstract:
Birds are moved through chilled water by bird moving means such as an auger or by a series of paddles. The birds tend to accumulate in a predetermined path in the water. Streams of water that include an antibacterial additive are directed toward the predetermined path and engage and disperse the birds, and wash the birds with the streams of water and the antibacterial additive, thereby increasing the rate of heat transfer from the birds and increasing the effectiveness of the antibacterial properties of the agents in the chilled water.
Abstract:
The chiller includes a semi-cylindrical tank (36) that conforms to the perimeter of its auger (38) SO that the water can be raised to a water level (68) high above the auger shaft (44). Streams of water (84) are directed from the pulling side (80) across the lower portion of the tank beneath the auger shaft (44) to the dead side 82 of the tank at intervals along the tank so as to disperse the lower portion of the masses (23) of buoyant birds (22) from the more crowded pulling side (80) of the tank, beneath the auger shaft (44) toward the more vacant dead side (82) of the tank, thereby distributing the products more evenly throughout the tank and causing more water turbulence in the tank, thereby increasing the rate of heat transfer from the birds and avoiding having the birds cross over the auger shaft moving backward in chiller into a following flight of the auger.
Abstract:
Axial flow fan propellers are provided with a roughened portion along the trailing edge of the fan blades on the pressure side of the blade to minimize tonal acoustic emissions generated by laminar boundary layer vortex shedding. The roughened portion may be provided by trip surfaces formed in the blades, by strips of abrasive material adhered to the blades along the trailing edges, respectively, by parallel or cross-hatched serrations in the blades or by upturned or offset trailing edges of the blades. The height of the roughened portion should be about equal to the boundary layer thickness of air flowing over the blade surfaces during operation of the fan. The fan propellers are particularly advantageous in heat exchanger applications, such as residential air conditioning system condenser units.
Abstract:
This invention relates in part to soybean event pDAB8264.44.06.1 and includes a novel expression cassettes and transgenic inserts comprising multiple traits conferring resistance to glyphosate, aryloxyalkanoate, and glufosinate herbicides. This invention also relates in part to methods of controlling resistant weeds, plant breeding and herbicide tolerant plants. In some embodiments, the event sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. This invention further relates in part to endpoint TaqMan PCR assays for the detection of Event pDAB8264.44.06.1 in soybeans and related plant material. Some embodiments can perform high throughput zygosity analysis of plant material and other embodiments can be used to uniquely identify the zygosity of and breed soybean lines comprising the event of the subject invention. Kits and conditions useful in conducting these assays are also provided.
Abstract:
The subject invention provides novel plants that are not only resistant to 2,4-D and other phenoxy auxin herbicides, but also to aryloxyphenoxypropionate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention alone or “stacked” together with another herbicide resistance gene, preferably a glyphosate resistance gene, so as to provide broader and more robust weed control, increased treatment flexibility, and improved herbicide resistance management options. More specifically, preferred enzymes and genes for use according to the subject invention are referred to herein as AAD (aryloxyalkanoate dioxygenase) genes and proteins. No α-ketoglutarate-dependent dioxygenase enzyme has previously been reported to have the ability to degrade herbicides of different chemical classes and modes of action. This highly novel discovery is the basis of significant herbicide tolerant crop trait opportunities as well as development of selectable marker technology. The subject invention also includes related methods of controlling weeds. The subject invention enables novel combinations of herbicides to be used in new ways. Furthermore, the subject invention provides novel methods of preventing the formation of, and controlling, weeds that are resistant (or naturally more tolerant) to one or more herbicides such as glyphosate.