摘要:
The magnetic refrigerating device according to one embodiment includes a fixed container filled with a refrigerant, the fixed container including a magnetic material container that is filled with a magnetic material and that can move in the fixed container and an elastic member provided at the end of the magnetic material container. The magnetic refrigerating device also includes a magnetic-field applying/removing mechanism that is provided at the outside of the fixed container, and that can apply and remove a magnetic field to and from the magnetic material and can generate a magnetic torque to the magnetic material container in moving direction of the magnetic material container.
摘要:
In a magnetic refrigeration device, magnetic bodies having a magnetocaloric effect and solid heat accumulation members having heat accumulation effect are arranged alternately with gaps therebetween. Magnetic field apply units start and stop application of magnetic fields to the magnetic bodies. A contact mechanism brings each of the magnetic bodies into contact with one of the solid heat accumulation members adjacent to the each magnetic body. Alternatively, the contact mechanism brings each of the solid heat accumulation members into contact with one of the magnetic bodies adjacent to the each solid heat accumulation members.
摘要:
A heat exchanger unit according to an exemplary embodiment includes: a plurality of heat exchangers that includes magnetic particles therein; and a connection section that is provided between the heat exchangers to connect the heat exchangers, the connection section including a solid-core member, a porous body or a combined substance of the solid-core member and the porous body. In the heat exchanger unit, the connection section invades partially into an inside of the heat exchanger connected thereto.
摘要:
A magnetic material for magnetic refrigeration has a composition represented by (R11-yR2y)xFe100-x (R1 is at least one of element selected from Sm and Er, R2 is at least one of element selected from Ce, Pr, Nd, Tb and Dy, and x and y are numerical values satisfying 4≦x≦20 atomic % and 0.05≦y≦0.95), and includes a Th2Zn17 crystal phase, a Th2Ni17 crystal phase, or a TbCu7 crystal phase as a main phase.
摘要翻译:用于磁性制冷的磁性材料具有由(R11-yR2y)xFe100-x表示的组成(R1是选自Sm和Er中的至少一种元素,R2是选自Ce,Pr,Nd,Tb中的至少一种元素, Dy,x和y是满足4 <= x <= 20原子%和0.05 <= y <= 0.95的数值),并且包括Th2Zn17结晶相,Th2Ni17结晶相或TbCu7晶相作为主相 。
摘要:
A magnetic material for magnetic refrigeration has a composition represented by (R11-yR2y)xFe100-x (R1 is at least one of element selected from Sm and Er, R2 is at least one of element selected from Ce, Pr, Nd, Tb and Dy, and x and y are numerical values satisfying 4≦x≦20 atomic % and 0.05≦y≦0.95), and includes a Th2Zn17 crystal phase, a Th2Ni17 crystal phase, or a TbCu7 crystal phase as a main phase.
摘要翻译:用于磁性制冷的磁性材料具有由(R1→1-y→R 2 x (R1是选自Sm和Er中的元素中的至少一种,R2是选自Ce,Pr,Nd,Tb和Dy中的至少一种元素,x和y是满足4 <= x <= 20的数值 原子%和0.05 <= y <= 0.95),并且包括Th 2 sub> 17 i> 17 sub>结晶相, 17S结晶相或TbCu 7结晶相作为主相。
摘要:
The magnetic material for magnetic refrigeration of the present invention is characterized by exhibiting, in a certain temperature region, preferably, only in part of a temperature region from 200 K to 350 K, an inflection point at which a second order differential coefficient of a magnetization curve changes from positive to negative with respect to a magnetic field, within the range of this magnetic field formed using a permanent magnet unit. This magnetic material of the present invention can generate a low temperature by using a relatively low magnetic field, by transferring the entropy between the electron spin system and the lattice system near the temperature at which an inflection point appears on the magnetization curve. Examples of the magnetic material meeting this condition are La(Fe,Si)13, (Hf,Ta)Fe2, (Ti,Sc)Fe2, and (Nb,Mo)Fe2, each containing 50 to 60 atomic % of transition metals such as Fe.
摘要:
At least one magnetic pole out of a pair of magnetic poles is provided with a T-shaped magnetic pole having a magnetic pole chip at the position contacting with a magnetic gap and an auxiliary magnetic pole which is wider than thereof. The proximity of an air bearing surface of the T-shaped magnetic pole is composed of a laminated film containing a magnetic material layer with a high saturated magnetic flux density which composes the magnetic pole chip and a portion of the auxiliary magnetic pole and a magnetic material layer with a low saturated magnetic flux density which composes the remaining portion of the auxiliary magnetic pole. When the front portion of the magnetic pole with the track width of 1.8 &mgr;m or less is composed of a laminated film containing a magnetic material layer having a high saturated magnetic flux density and a magnetic material layer having a low saturated magnetic flux density, the thickness of the magnetic material layer having the high saturated magnetic flux density is 0.5 &mgr;m or more. According to the above described magnetic pole, the magnetic saturation near the tip portion of the magnetic pole is controlled, so that preferable magnetic field strength and magnetic field gradient can be attained when the track width is narrowed.
摘要:
A magnetic yoke having a magnetic gap provided in the side of the surface facing the medium is disposed on the surface of a substrate. An MR film is disposed on the surface of the magnetic yoke substantially parallel to the substrate with a predetermined separation from the surface S facing the medium. At least both end portions of the MR film are magnetically coupled to the magnetic yoke. A pair of leads for supplying sensing current to the MR film have magnetic lead portions formed from the same magnetic layers as the magnetic yoke. The magnetic lead portions curb deterioration of MR head properties and yield reduction during formation of the leads. Furthermore, a bias magnetic field is applied to the magnetic yoke and the MR film at least during operation of the head. This bias magnetic field is for instance provided by a magnetic field induced by the electric current. Alternatively, a magnetic field induced by the electric current is applied while heat-processing the magnetic yoke. Magnetic anisotropy is induced to the magnetic yoke in a direction differing according to the position. This magnetic anisotropy curbs Barkhausen noise caused by the magnetic yoke.
摘要:
A thin-film magnetic head comprises a magnetic gap disposed to be positioned on an air bearing surface of the magnetic head, a pair of magnetic poles disposed to hold the magnetic gap therebetween, and a coil positioned between the pair of the magnetic poles to intersect the magnetic poles, wherein at least one of the magnetic poles being composed of a T-shaped magnetic pole, the T-shaped magnetic pole comprising a front part of a magnetic pole contacting with the magnetic gap, an intermediate part of a magnetic pole lying on the front part, and a rear part of a magnetic pole lying on the intermediate part, wherein a width of the front part roughly defines a track width, the rear part has a wider width in a direction of track width than a width of the front part, and the intermediate part contacts with the rear part at an entire width of the rear part at the air bearing surface and has a narrower width at a contacting face with the front part than the width of the rear part.