Abstract:
In one example, a structure for attaching a wheel to one of a frame of a motorcycle or a bicycle may include an axle having first and second opposing end portions and supporting a wheel, a left axle support collar structure configured to support the first opposing end portion of the axle, and a right axle support collar structure configured to support the second opposing end portion of the axle. A first bearing is positioned in the left axle support collar structure, and a second bearing is positioned in the left axle support collar structure. The axle rotates relative to the frame.
Abstract:
A bicycle may include a rear suspension system to absorb forces impacting on the bicycle by allowing a rear wheel of the bicycle to be displaced relative to the bicycle frame. Upon displacement of the rear wheel, the rear suspension system allows the rear wheel to move from a general first position to a second position, and then acts to return the rear wheel to the general first position. The rear suspension system may be adjusted in some versions to affect the travel path of the rear wheel as well as the leverage ratio curve to suit the rider's preference. The bicycle may include a rear frame couple with a front frame through first and second pivot translating assemblies, the orientations and/or shapes of which affect the rear wheel path as well as the leverage ratios.
Abstract:
An axle and hub structure for attaching a wheel to a bicycle or motorcycle, where the bearings for rotationally supporting the axle and hub are positioned on the frame, and the axle rotates relative to the frame. More particularly, a structure for attaching a wheel to one of a motorcycle or bicycle including an axle having opposing end portions and supporting a wheel, at least one left axle support collar, at least one right axle support collar, a bearing in said left axle support collar and supporting one end portion of said axle, a bearing in said right axle support collar and supporting an opposing end portion of said axle, and wherein the axle rotates relative to the frame.
Abstract:
In one example, a structure for attaching a wheel to one of a frame of a motorcycle or a bicycle may include an axle having first and second opposing end portions and supporting a wheel, a left axle support collar structure configured to support the first opposing end portion of the axle, and a right axle support collar structure configured to support the second opposing end portion of the axle. A first bearing is positioned in the left axle support collar structure, and a second bearing is positioned in the left axle support collar structure. The axle rotates relative to the frame.
Abstract:
The present disclosure describes an axle and hub structure for attaching a wheel to a bicycle or motorcycle, where the bearings for rotationally supporting the axle and hub are positioned on the frame, and the axle rotates relative to the frame. In one embodiment, a structure for attaching a wheel to one of a motorcycle or bicycle includes an axle having opposing end portions and supporting a wheel, at least one left axle support collar, at least one right axle support collar, a bearing in the left axle support collar and supporting one end portion of the axle, and a bearing in the right axle support collar and supporting an opposing end portion of the axle. The axle rotates relative to the frame.
Abstract:
In one example, a structure for attaching a wheel to one of a frame of a motorcycle or a bicycle may include an axle having first and second opposing end portions and supporting a wheel, a left axle support collar structure configured to support the first opposing end portion of the axle, and a right axle support collar structure configured to support the second opposing end portion of the axle. A first bearing is positioned in the left axle support collar structure, and a second bearing is positioned in the left axle support collar structure. The axle rotates relative to the frame.
Abstract:
A bicycle may include a rear suspension system to absorb forces impacting on the bicycle by allowing a rear wheel of the bicycle to be displaced relative to the bicycle frame. Upon displacement of the rear wheel, the rear suspension system allows the rear wheel to move from a general first position to a second position, and then acts to return the rear wheel to the general first position. The rear suspension system may be adjusted in some versions to affect the travel path of the rear wheel as well as the leverage ratio curve to suit the rider's preference. The bicycle may include a rear frame couple with a front frame through first and second pivot translating assemblies, the orientations and/or shapes of which affect the rear wheel path as well as the leverage ratios.
Abstract:
A bicycle may include a rear suspension system to absorb forces impacting on the bicycle by allowing a rear wheel of the bicycle to be displaced relative to the bicycle frame. Upon displacement of the rear wheel, the rear suspension system allows the rear wheel to move from a general first position to a second position, and then acts to return the rear wheel to the general first position. The rear suspension system may be adjusted in some versions to affect the travel path of the rear wheel as well as the leverage ratio curve to suit the rider's preference. The bicycle may include a rear frame coupled with a front frame through first and second pivot translating assemblies, the orientations and/or shapes of which affect the rear wheel path as well as the leverage ratios.