Abstract:
A method is provided for the manufacture of micro-structures, such as micro-electromechanical structures (MEMS) or silicon optical benches (SiOB). The method includes using a single mask to pattern two or more cavity areas to be etched into a substrate in different etching steps, and then selectively choosing the cavity areas for etching. In a preferred embodiment, the method includes patterning a substrate to identify a plurality of cavity areas to be etched into the substrate and filling at least one of the cavity areas with a distinctive filler material. Filler material is chemically distinctive in the sense that it can be etched selectively with respect to the other filling materials. At least one of the cavity areas containing a distinctive filler material is then chosen based at least in part on the distinctive filler material. The chosen cavity area is then etched. The methods of the invention produce micro-structures with more accurate cavity areas by minimizing overlay error and avoiding the need for lithography over extreme topography. The micro-structures manufactured by the methods of the invention are also provided herein.
Abstract:
In a liquid crystal display device, a method for creating desirable pretilt angle by means of topography of the substrates, such as a surface that is sloped with respect to the surface of the electrodes. In combination with a low pretilt but highly photo-stable alignment layer, which may be very resistant to high levels of ultraviolet radiation, a high pretilt and photo-stable alignment structure is generated, by essentially combining two incompatible technical approaches. The ever more stringent requirements for projection displays are met. The methods for producing such sloped surfaces and the considerations related to design of the sloped surfaces are disclosed.
Abstract:
A method and system for forming a thermoelement for a thermoelectric cooler is provided. In one embodiment a substrate having a plurality of pointed tips covered by a metallic layer is formed. Portions of the metallic layer are covered by an insulator and other portions of the metallic layer are exposed. Next, a patterned layer of thermoelectric material is formed by depositions extending from the exposed portions of the metallic layer in the presence of a deposition mask. Finally, a metallic layer is formed to selectively contact the patterned layer of thermoelectric material.
Abstract:
A method is provided for the manufacture of micro-structures, such as micro-electromechanical structures (MEMS) or silicon optical benches (SiOB). The method includes using a single mask to pattern two or more cavity areas to be etched into a substrate in different etching steps, and then selectively choosing the cavity areas for etching. In a preferred embodiment, the method includes patterning a substrate to identify a plurality of cavity areas to be etched into the substrate and filling at least one of the cavity areas with a distinctive filler material. Filler material is chemically distinctive in the sense that it can be etched selectively with respect to the other filling materials. At least one of the cavity areas containing a distinctive filler material is then chosen based at least in part on the distinctive filler material. The chosen cavity area is then etched. The methods of the invention produce micro-structures with more accurate cavity areas by minimizing overlay error and avoiding the need for lithography over extreme topography. The micro-structures manufactured by the methods of the invention are also provided herein.
Abstract:
A user input device includes a base that has a top surface. Flexibly attached to the base is a joystick. Character indicia are displayed on the base, and each indicium corresponds to a unique joystick position or motion sequence. The user input device has a processor and non-volatile memory that stores machine-readable instructions, that when executed by the processor, transmit a code associated with the unique joystick position or motion sequence.
Abstract:
A user input device includes a base that has a top surface. Flexibly attached to the base is a joystick. Character indicia are displayed on the base, and each indicium corresponds to a unique joystick position or motion sequence. The user input device has a processor and non-volatile memory that stores machine-readable instructions, that when executed by the processor, transmit a code associated with the unique joystick position or motion sequence.
Abstract:
Method and apparatus for thermal management of an integrated circuit. A semiconductor device includes an integrated circuit and an integrated thermoelectric cooler formed on a common substrate. A semiconductor device is fabricated by forming an integrated circuit on a front side of the substrate and forming an integrated thermoelectric cooler on a back side of the substrate. A first thermal sink of semiconductor material capable of absorbing heat from the integrated circuit is formed on the back side of the substrate. N-type thermoelectric elements are formed on contacts formed on the first thermal sink. P-type thermoelectric elements are formed on contacts formed on a second thermal sink of semiconductor material capable of dissipating heat. The p-type and n-type thermoelectric elements are bonded to the contacts on the first and second thermal sinks, respectively, by a flip-chip soldering process. Using this method, semiconductor devices including an integrated circuit and integrated modules of thermoelectric elements are formed having cooling capacities corresponding to heat dissipated from different portions of the integrated circuit. As a result, substantially uniform temperature distribution across the integrated circuit can be achieved.
Abstract:
A scanning heat flow probe for making quantitative measurements of heat flow through a device under test is provided. In one embodiment the scanning heat flow probe includes an electric current conductor in a cantilever beam connected to a probe tip and coupled to two voltmeter leads. The probe also includes two thermocouple junctions in the cantilever beam electrically isolated from the electric current conductor and the two voltmeter leads. Heat flow is derived quantitatively using only voltage and current measurements. In other forms, the invention relates to the calibration of scanning heat flow probes through a method involving interconnected probes, and relates to the minimization of heat flow measurement uncertainty by probe structure design practices.
Abstract:
In the invention a pellicle mounting structural principle is provided whereby a membrane for protection of an X-ray mask is interchangeably positioned with proper spacing between the X-ray mask and the resist on the wafer in which the pattern produced by the X-ray exposure is to be formed. The mounting principle employs a combined assembly of, a membrane and spacer member subassembly together with a means for seectably separable retention to the supporting structural portion of the mask The principle accommodates membrane materials that may not be flexible and provides an ability to remove the membrane for cleaning or replacement and to removal and reassembly with ease in reestablishing the spacing with respect to the mask. The means for the selectably separable retention to the supporting structural portion of the mask involves the use of springs and elastomers, securing to the sides of the supporting structural mask ring and the bonding of the spacer member directly to the mask.
Abstract:
In a liquid crystal display device, a method for creating desirable pretilt angle by means of topography of the substrates, such as a surface that is sloped with respect to the surface of the electrodes. In combination with a low pretilt but highly photo-stable alignment layer, which may be very resistant to high levels of ultraviolet radiation, a high pretilt and photo-stable alignment structure is generated, by essentially combining two incompatible technical approaches. The ever more stringent requirements for projection displays are met. The methods for producing such sloped surfaces and the considerations related to design of the sloped surfaces are disclosed.