摘要:
Systems, methods and apparatus are provided through which in one aspect, a three-dimensional (3D) image of an object is constructed from a plurality of two-dimensional (2D) images of the object using a specialized filter. In some embodiments, the specialized filter implements a linear ramp function, a windowing function, and/or a polynomial function. In some embodiments, the 3D image is back-projected from the filtered two-dimensional images, yielding a 3D image that has improved visual distinction of overlapping anatomic structures and reduced blurring.
摘要:
A method includes obtaining a first image of a subject at a first position, changing a position between the detector and the subject, obtaining a second image, and pasting the first and images to obtain a composite image. The first image and the second image may have an amount of overlap equal to no more than about 30 percent of a field of view of the detector in a direction of movement between the first image and the second image, and, according to some embodiments, may have an overlap of about 4 percent to about 16 percent. This may, in some embodiments, amount to an amount of overlap of about 1.5 cm to about 6.5 or 12 cm. In some embodiments, the span of overlap of the images is at least about 30 cm. The geometry of the images may be used to help paste the images together appropriately.
摘要:
Systems and methods that utilize asymmetric geometry to acquire radiographic tomosynthesis images are described. Embodiments comprise tomosynthesis systems and methods for creating a reconstructed image of an object from a plurality of two-dimensional x-ray projection images. These systems comprise: an x-ray detector; and an x-ray source capable of emitting x-rays directed at the x-ray detector; wherein the tomosynthesis system utilizes asymmetric image acquisition geometry, where θ1≠θ0, during image acquisition, wherein θ1 is a sweep angle on one side of a center line of the x-ray detector, and θ0 is a sweep angle on an opposite side of the center line of the x-ray detector, and wherein the total sweep angle, θasym, is θasym=θ1+θ0. Reconstruction algorithms may be utilized to produce reconstructed images of the object from the plurality of two-dimensional x-ray projection images.
摘要:
There is therefore provided, in one aspect, a method for imaging an object utilizing a computed tomographic (CT) imaging system having a rotating gantry, a multislice detector array on the rotating gantry and using at least n>1 rows of detector channels, and a radiation source on the rotating gantry configured to project a beam of radiation towards the multislice detector array through an object to be imaged. The method includes helically scanning the object with the CT imaging system at a pitch p>n to acquire projection data from the n rows of detector channels; applying a combined helical weight and conjugate weight to at least a portion of the acquired projection data to produce virtual projection data compensating for incomplete helical row data of the acquired projection data; and reconstructing an image of the object utilizing the acquired projection data and the virtual projection data.
摘要:
A method for reconstructing an image of an object utilizing a computed tomographic (CT) imaging system having a radiation source configured to project a beam of radiation through an object and towards a multislice detector array configured to sense attenuation of the radiation passing through the object; the method includes helically scanning an object to acquire a plurality of slices of projection data, generating a separate projection dataset for each of N separate detector rows wherein the separate projection datasets include detector row projection data and detector row conjugate projection data, combining the detector row projection data and the detector row conjugate projection data, and helically weighting the combined projection data using a combined helical weighting and conjugate data weighting algorithm such that a greater weight is applied to combined center row projection data than to at least one outermost detector row projection data.
摘要:
A technique is provided for non-uniform weighting in back-projection calculations in tomosythesis. The non-uniform weighting may include weighting based on a count map of the number of times pixels of individual slices are traversed by radiation in different projections. Weighting may also include non-uniform functions for contributions of features at different slice level to the sensed X-ray attenuation system response inconsistencies are accounted for by further weighting based upon projection maps which may be created in separate system calibration or configuration routines.
摘要:
A device for use in image pasting is described. The device includes a digital x-ray detector capable of automatic digital imaging without the use of an image intensifier; the detector preferably being a flat-panel detector. Additionally, an image pasting system using a solid-state detector is described. The system can connect the detected images to a display via a network (such as a WAN, a LAN, or the internet). Further, an image geometry measurement device for use in pasting x-ray images is disclosed. The geometry measurement device helps determine the relative position of two images to be used in image pasting. This information can be used alone, or in connection with an image pasting algorithm. Still further, methods of forming composite images are disclosed using a flat-panel detector and using the geometry of the images. The disclosed devices and systems can be integrated with other digital image pasting technology.
摘要:
One aspect of the present invention is a method for reconstructing an image of an object utilizing a computed tomographic (CT) imaging system. The method includes steps of: helically scanning an object; interpolating an axial fan beam set of projection data as a vector function {right arrow over (R)}a from a fan beam set of projection data from the helical scan {right arrow over (R)}hi, where i=1, . . . , n is a row index and n represents a of number of rows of the detector array, using a relationship written as: R → a ( β , γ ) = ∑ i = 1 n w i ( β ) R → h i ( β , γ ) , where wi(&bgr;) is a weighting function written as: w i = ∑ j = 1 m f ( β - β j ) , where m is a number of images used for z smoothing, &bgr;j is a gantry rotation angle for a plane of reconstrution of a jth image, and f ( x ) = { g ( x ) , &LeftBracketingBar; x &RightBracketingBar; ≤ β b 0 , &LeftBracketingBar; x &RightBracketingBar; > β b where constants β b = 2 π p , and g(x) is either a linear or non-linear function.
摘要:
A method is disclosed, in a diagnostic medical environment, that enhances workflow while using a computer-aided-detection (or diagnosis) (CAD) system in the environment. The method comprises generating image data with a diagnostic medical imaging acquisition system. The image data is transmitted from the diagnostic medical imaging acquisition system to a computer-aided-detection (or diagnosis) (CAD) system and an archive/review station. Detection results are generated by processing the image data, using the CAD system, while storing and viewing the image data on the archive/review station. The detection results are transmitted from the CAD system to the archive/review station. The detection results are integrated with the image data by the archive/review station to form composite image data. The composite image data is displayed by the archive/review system.
摘要:
A CT Fluoro system having an architecture and algorithms which facilitate increasing the frame rate and providing acceptable image quality is described. Generally, and in one embodiment, the system includes apparatus and algorithms that speed-up image reconstruction and reduce image artifacts that may result from such fast reconstruction. The fast reconstruction is achieved by performing, for example, view compression, channel compression, backprojection with reduced delay, and parallel processing.