摘要:
A system and method are provided for determining a position of a subject under examination during implementation of a medical imaging procedure. A radiation generating unit generates optical radiation that is used to illuminate the subject under examination. The subject under examination blocks the generated optical radiation to produce a shadow. The shadow is detected by an optical detection unit and used by a position determination unit to determine a position of the subject under examination.
摘要:
A medical imaging unit includes a patient receiving area, a housing unit at least partly surrounding the patient receiving area, a detector unit, and a movement detection unit. The movement detection unit includes two or more detection elements configured for detecting a distance from the detection elements to the patient, and including an evaluation unit. The evaluation unit is configured to establish from detected movement of the individual detection elements a three-dimensional movement of the patient within the patient receiving area.
摘要:
A method is provided for recording, with a magnetic resonance device, magnetic resonance data of a target region of a patient moved by their breathing. An optical camera arranged in a bore of the magnetic resonance device directed onto the patient is used. Image data of the patient recorded by the camera before and/or during the recording of the magnetic resonance data is evaluated to form breathing information describing the breathing state and the breathing information is used for triggering and/or movement correction and/or assessment of a process in which a patient holds their breath.
摘要:
A transmitter for pilot tone navigation in a magnetic resonance tomography system includes a power supply and an antenna. The transmitter is configured to transmit a pilot tone signal via the antenna. The transmitter also includes a decoupling element in order to protect a transmitter output from signals that the antenna receives with excitation pulses of the magnetic resonance tomography system during a magnetic resonance tomography. In a method, movement-dependent changes to the pilot tone signal of the transmitter are identified by a controller of the magnetic resonance tomography system.
摘要:
A method is provided for recording, with a magnetic resonance device, magnetic resonance data of a target region of a patient moved by their breathing. An optical camera arranged in a bore of the magnetic resonance device directed onto the patient is used. Image data of the patient recorded by the camera before and/or during the recording of the magnetic resonance data is evaluated to form breathing information describing the breathing state and the breathing information is used for triggering and/or movement correction and/or assessment of a process in which a patient holds their breath.
摘要:
A system for wireless transmission of signals is provided. The system includes a mobile operator unit that is operable to transmit signals; and a base unit of a safety-critical device that is operable to receive signals from the mobile operator unit. The mobile operator unit is operable to categorize the signals to be transmitted as safety-relevant control signals and non-critical communication signals. Only the safety-relevant control signals are checked for error-free transmission. The non-critical communication signals are transmitted without error safety checking.
摘要:
A transmitter for pilot tone navigation in a magnetic resonance tomography system includes a power supply and an antenna. The transmitter is configured to transmit a pilot tone signal via the antenna. The transmitter also includes a decoupling element in order to protect a transmitter output from signals that the antenna receives with excitation pulses of the magnetic resonance tomography system during a magnetic resonance tomography. In a method, movement-dependent changes to the pilot tone signal of the transmitter are identified by a controller of the magnetic resonance tomography system.
摘要:
A medical imaging unit includes a patient receiving area, a housing unit at least partly surrounding the patient receiving area, a detector unit, and a movement detection unit. The movement detection unit includes two or more detection elements configured for detecting a distance from the detection elements to the patient, and including an evaluation unit. The evaluation unit is configured to establish from detected movement of the individual detection elements a three-dimensional movement of the patient within the patient receiving area.